

THERMAL PROPERTIES OF MATTER AND HEAT TRANSFER

- Q1. A faulty thermometer reads freezing point and boiling point of water as -5°C and 95°C respectively. What is the correct value of temperature as it reads 60°C on faulty thermometer?
 - (a) 60° C
- (b) 65° F
- (c) 64° C
- (d) 62° C
- Q2. Temperature of equal masses of three different liquids A, B and C are 10°C, 15°C and 20°C respectively. The temperature when A and B are mixed is 13°C and when B and C are mixed, it is 16°C. What will be the temperature (°C) when A and C are mixed is:
 - (a) 140/11
- (b) 130/11
- (c) 150/11
- (d) 160/11
- Q3. Two liquids A and B are at 32°C and 24°C. When mixed in equal masses the temperature of the mixture is found to be 28°C.

 Their specific heats are in the ratio of
 - (a) 3:2
- (b) 2:3
- (c) 1:1
- (d) 4:3

- Q4. A pendulum clock is 5s fast at temperature of 15°C and 10s slow at a temperature of 30°C. At what temperature does it give the correct time?
 - (a) 18°C
- (b) 20°C
- (c) 22°C
- (d) 25°C
- Q5. The thermal conductivity of a rod depends on
 - (a) length
 - (b) mass
 - (c) area of cross-section
 - (d) material of the rod
- Q6. Two cylindrical rods of lengths l_1 and l_2 , radii r_1 and r_2 have thermal conductivities K_1 and K_2 respectively. The ends of the rods are maintained at the same temperature difference. If l_1 = $2l_2$ and $r_1 = \frac{r_2}{2}$, the rates of heat

flow in them will be the same if

$$\frac{K_1}{K_2}$$
 is-

- (a) 1
- (b) 2
- (c) 4
- (d) 8

- Q7. Two solid cylinders of equal length are made of material of thermal conductivity K_1 and K_2 . Their thermal resistance will be same if the ratio of their diameters is-

 - (a) $\frac{K_1}{K_2}$ (b) $\left(\frac{K_1}{K_2}\right)^2$ (c) $\sqrt{\frac{K_2}{K_1}}$ (d) $\frac{K_2}{K_1}$
- The ratio of energy of radiation Q8. emitted by a black body at 27°C and 927°C is-
 - (a) 1:4
- (b) 1:16
- (c) 1:64
- (d) 1:256
- A body cools down from 80°C to Q9. 50°C in 5 minutes. How much time it will take to cool down 50°C to from 30°C? The temperature of the surrounding is 20°C. Assume Newton's law of cooling to be valid.
 - (a) 5 minutes
 - (b) More than 5 minute
 - (c) Less than 5 minute
 - (d) Depends on the temperature of the surrounding.
- Q10. Two rods of same length and material transfer a given amount of heat in 12s, when they are joined end to end. But when they are joined

lengthwise, they will transfer same heat in same conditions in

- (a) 24 s
- (b) 3 s
- (c) 1.5 s
- (d) 4.8 s
- Q11. A black body at 200 K is found to emit maximum energy at a wavelength of 14 μm. When its temperature is raised to 1000 K. wavelength which the at maximum energy is emitted is-
 - (a) 14 micrometer
 - (b) 70 micrometer
 - (c) 2.8 micrometer
 - (d) 28 micrometer
- Q12. Two rods of same dimensions, but made of different materials are joined end to end with their free ends being maintained at 0°C and 100°C respectively. The temperature of the junction is

70°C. If the ratio $\frac{K_1}{K_2} = \frac{n}{7}$, then

find the value of n.

- (a) 3
- (b) 4
- (c) 5
- (d) 6