Complex Number

Any number of the form a+ib is known as complex number where $a,b \in R$. It is denoted by z.

a = Real part of z = Re(z)

b = Imaginary part of z = Im(z)

Where

$$i = \sqrt{-1}$$
. $i^2 = -1$; $i^3 = -i$, $i^4 = 1$

$$i^{4n+1} = i : i^{4n+2} = -1 : i^{4n+3} = -i : i^{4n} = 1$$

If Re(z) = 0; z is said to be purely imaginary

If Im(z) = 0; z is said to be purely real.

If $z_1 = z_2 \implies Re(z_1) = Re(z_2)$ and Im $(z_1) = Im(z_2)$.

CONJUGATE OF A COMPLEX NUMBER $\begin{pmatrix} \overline{z} \end{pmatrix}$

If z = a + ib, then $\overline{z} = a - ib$

Properties

(i)
$$z = z$$

(ii)
$$Re(z) = \frac{z+z}{2}$$

(iii)
$$Im(z) = \frac{z-z}{2i}$$

(iv) If z = z then z is purely real.

(v) If z = -z then z is purely imaginary.

(vi)
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
; $\overline{z_1 z_2 z_3} = \overline{z_1} \overline{z_2} \overline{z_3}$; $\left(\frac{\overline{z_1}}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}} (z_2 \neq 0)$

ARGAND PLANE

MODULUS OF A COMPLEX NUMBER

Modulus is the distance of the complex number from the origin in the argand plane. It is denoted by |z|.

Properties

(i) If
$$|z| = 0 \Rightarrow z = 0$$

(ii)
$$|z| = |z|$$

(iii)
$$z\overline{z} = |z|^2$$

(iv)
$$|z^n| = |z|^n$$

(v)
$$|z_1z_2z_3| = |z_1||z_2||z_3|$$

(vi)
$$\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$$

(vii)
$$||\mathbf{z_1}| - |\mathbf{z_2}|| \le |\mathbf{z_1} + \mathbf{z_2}| \le |\mathbf{z_1}| + |\mathbf{z_2}|$$

$$||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$$

(viii)
$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

(ix)
$$|z_1 \pm z_2|^2 = (z_1 \pm z_2)(\overline{z_1} \pm \overline{z_2})$$

$$= |z_1|^2 + |z_2|^2 \pm z_1 \overline{z_2} \pm \overline{z_1} z_2$$

- Q.1. Find the value of θ for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary.
- Q.2. If $|z_1| = 1$; $|z_2| = 2$; $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$ find the value of $|z_1 + z_2 + z_3|$.
- Q.3. If |z| = 1; $w = \frac{z-1}{z+1}(z \neq -1)$. Find Re(w)
- Q.4. If $\frac{\mathbf{w} \mathbf{wz}}{1 \mathbf{z}}$ is purely real where $\mathbf{w} = \alpha + i\beta$; $\beta \neq 0$; $\mathbf{z} \neq 1$. Find the value of $|\mathbf{z}|$.
- Q.5. Let z is a complex number such that $Im(z) \neq 0$ and $a = z^2 + z + 1$ is real. Find value of a.
- Q.6. If z_1 and z_2 are two complex numbers such that $\left|z_1\right| < 1 < \left|z_2\right|$. Prove that

$$\left|\frac{1-\mathsf{z}_1\overline{\mathsf{z}_2}}{\mathsf{z}_1-\mathsf{z}_2}\right|<1.$$

Q.7. Prove that these exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$

where $|a_r| < 2$.

Q.8. If z is a complex number such that $\left|z + \frac{1}{z}\right| = 2$. Find the range of |z|.