Q. We know solution is a mixture of solute and solvent components. How we will decide which component is solvent?

Type of Solution

Type of Solution	Solvent	Solute
Solid solution	Solid	Gas
	Solid	Liquid
	Solid	Solid
	Liquid	Gas
	Liquid	Liquid
	Liquid	Solid
Gaseous Solution	Gas	Gas
	Gas	Liquid
	Gas	Solid

Concentration of solution

1. Temperature independent:

- Mole Fraction
- Molality (m)
- $\% \mathbf{w} / \mathbf{w}$
- Ppm

2. Temperature independent:

- $\% \mathbf{w} / v$
- $\% \mathrm{v} / \mathrm{v}$
- Molarity (M)
- \quad Normality (N)
Q. if 1.678 mg gold powder is dissolved in 1 lit of water (density of water $=1 \mathrm{~g} / \mathrm{ml}$). calculate $\% \mathrm{w} / \mathrm{v}$.
Q. What are the final concentration of nitrate ion when following are mixed

50 ml of $0.12 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+100 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{FeCl}_{3}$
+100 ml of $0.26 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Ans. $\left[\mathrm{NO}_{3}\right]^{-}=\frac{(50 \times 0.12 \times 3)+(100 \times 0.26 \times 2)}{250}$
= 70/250
$=0.28$

Solubility

Factors affecting solubility:

- Nature of component
- Temperature
- Pressure

1. Solubility of a solid in a liquid:

Such a solution in which no more solute can be dissolved at the same temperature and pressure is called a saturated solution.
'Like dissolves like'.
Effect of temperature on solubility:

Case a- if dissolution process is endothermic ($\left.\Delta_{\mathrm{sol}} \mathrm{H}>0\right)$ in nature then,
$\mathbf{T} \uparrow \longrightarrow$ Solubility \uparrow
$T \downarrow \longrightarrow$ Solubility \downarrow
Case b- if dissolution process is exothermic ($\Delta_{\mathrm{sol}} \mathrm{H}<0$) in nature then,

T $\uparrow \longrightarrow$ Solubility \downarrow
$T \downarrow \longrightarrow$ Solubility \uparrow

Effect of pressure on solubility:
Pressure does not have any significant effect on solubility of solids in liquids.
2. Solubility of a gas in a liquid:

1. Effect of pressure:

Generally on increment of pressure solubility of gas in a liquid is increases.

Henery Law:

The law states that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas.
a / c to Dalton experimental facts: mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.

Henry's law states that "the partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution" Mathematically; $\mathbf{p}=\mathbf{K}_{\mathrm{H}} \boldsymbol{x}$,

Where, K_{H} is Henry's law constant. (K_{H} depends on nature of gas)
P = partial pressure of gas
$x=$ mole fraction
For a particular gas, if value of K_{H} is larger then, solubility is lesser.

It was experimentally observed that for a particular gas, value of K_{H} increases on rise in temperature \& hence, lesser the solubility.

Gas	Temperature	K_{H} (Kbar)
N_{2}	293	76.48
$\mathrm{~N}_{2}$	303	88.84
O_{2}	293	34.86
O_{2}	303	46.82
He	293	144.97

Q. If N_{2} gas is bubbled through water at 293 K , how many millimoles of N_{2} gas would dissolve in 1 litre of water. Assume that N2 exerts a partial pressure of 0.987 bar. Given that Henry's law constant for N2 at 293 K is 76.48 kbar.

Ans.
$x_{N_{2}}=\frac{p_{N_{2}}}{K_{H}}=\frac{0.987 \text { bar }}{76480 \text { bar }}=1.29 \times 10^{-5}$
1 lit water contains 55.5 mole of water. So,
$\boldsymbol{x}_{N_{2}}=\frac{\boldsymbol{n}_{N_{2}}}{\boldsymbol{n}_{N_{2}}+\boldsymbol{n}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\boldsymbol{n}_{N_{2}}}{\boldsymbol{n}_{\mathrm{N}_{2}}+\mathbf{5 5 . 5}}$
we can treat, $n_{N_{2}}+55.5 \approx 55.5$,
$\Rightarrow \frac{n_{N_{2}}}{55.5}=1.29 \times 10^{-5}$
$\Rightarrow n_{N_{2}}=7.16 \times 10^{-4}$
Or milli-moles of \mathbf{N}_{2} gas is $\mathbf{0 . 7 1 6}$
Q. The Henry's law constant for the solubility of N 2 gas in water at 298 K is
1.0×10^{5} atm. The mole fraction of N_{2} in air is 0.8 . The number of moles of N_{2} from air dissolved in 10 moles of water at 298 K and 5 atm pressure is
A. 4.0×10^{-4}
B. 4.0×10^{-5}
C. 5.0×10^{-4}
D. 4.0×10^{-6}

Ans.

$$
\begin{aligned}
& p=K_{H} x_{N_{2}} \\
& \Rightarrow 0.8 \times 5=1 \times 10^{5} \times x_{N_{2}} \\
& \Rightarrow x_{N_{2}}=4 \times 10^{-5} \\
& \Rightarrow 4 \times 10^{-5}=\frac{n_{N_{2}}}{n_{N_{2}}+10}
\end{aligned}
$$

$$
n_{N_{2}}=4 \times 10^{-4}
$$

Application of Henry's law

i. The Bends:

To avoid bends, as well as, the toxic effects of high concentrations of nitrogen in the blood, the tanks used by scuba divers are filled with air diluted with helium (11.7\% helium, 56.2\% nitrogen and 32.1\% oxygen).
ii. Anoxia:

iii. To increase the solubility of $\mathbf{C O 2}$ in soft drinks and soda water, the bottle is sealed under high pressure.
2. Effect of temperature on solubility:

Solubility of gases in liquids decreases with rise in temperature.
if dissolution process is endothermic ($\Delta_{\text {sol }} \mathrm{H}>0$) in nature then,
$\mathbf{T} \uparrow \longrightarrow$ Solubility \uparrow
T $\downarrow \longrightarrow$ Solubility \downarrow

Vapour Pressure of liquid solution:

Liquid solution means solvent is liquid, generally liquid is volatile but solute may or may not be volatile.
A. Vapour pressure liquid - liquid solution:

Assume a binary solution containing 2 volatile components A and B. at equilibrium between liquid and vapour phase,
$p_{1}=$ partial vapour pressure of component 1
$p_{2}=$ partial vapour pressure of component $2 \&$
$p_{T}=$ Total vapour pressure of solution
$x_{1}=m o l e$ fraction of component 1
$x_{2}=$ mole fraction of component 2
Raoult's law:
for a solution of volatile liquids, the partial vapour pressure of each component in the solution is directly proportional to its mole fraction.

For component 1,
$\Rightarrow p_{1} \alpha x_{1}$
$\Rightarrow p_{1}=p_{1}^{0} x_{1}$
Where, p_{1}^{0} is vapour pressure of pure component 1

For component 2,
$\Rightarrow p_{2} \alpha x_{2}$
$\Rightarrow p_{2}=p_{2}^{0} x_{2}$
Where, p_{2}^{0} is vapour pressure of pure component 2.
According to Dalton's law of partial pressure,
$p_{T}=p_{1}+p_{2}$
$p_{T}=p_{1} x_{1}+p_{2}{ }^{0} x_{2}$

We know, for a binary solution, $x_{1}+x_{2}=1$
Let assume $\mathbf{2}^{\text {nd }}$ component is more volatile than $\mathbf{1}^{\text {st }}$ component. So, $\boldsymbol{p}_{1}^{0}<\boldsymbol{p}_{2}^{0}$
$p_{T}=p_{1}^{0} x_{1}+p_{2}{ }^{0} x_{2}$
$p_{T}=p_{1}^{0}\left(1-x_{2}\right)+p_{2}^{0} x_{2}$
$p_{T}=p_{1}^{0}+\left(p_{2}^{0}-p_{1}^{0}\right) x_{2}$

The composition of vapour phase, let y_{1} and y_{2} are the mole fraction of components 1 \& 2 respectively.
$y_{1}=\frac{p_{1}}{p_{T}}=\frac{x_{1} p_{1}^{0}}{x_{1} p_{1}^{0}+x_{2} p_{2}^{0}}$
$y_{1}=\frac{p_{2}}{p_{T}}=\frac{x_{2} p_{2}^{0}}{x_{1} p_{1}^{0}+x_{2} p_{2}^{0}}$

