
GIC (General Inorganic Chemistry) Lecture - 2

Thermal Stability of salt

Q. Arrange following salts according to their decreasing thermal stability Li₂CO₃, Na₂CO₃, K₂CO₃, Rb₂CO₃, CS₂SO₃

Ans.

 $\begin{array}{ll} \text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{O} &+ \text{CO}_2\\ \text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{O} &+ \text{CO}_2\\ \text{K}_2\text{CO}_3 \rightarrow \text{K}_2\text{O} &+ \text{CO}_2\\ \text{Rb}_2\text{CO}_3 \rightarrow \text{Rb}_2\text{O} &+ \text{CO}_2\\ \text{CS}_2\text{CO}_3 \rightarrow \text{CS}_2\text{O} &+ \text{CO}_2 \end{array}$

Decomposition Trends of different salts

1. Carbonates:

Case-1:

$$\begin{array}{c} Na_2CO_3 \\ K_2CO_3 \\ Rb_2CO_3 \\ Cs_2CO_3 \end{array} \xrightarrow{\Delta} no effect$$

Case-2:

 $\begin{array}{l} Ag_2CO_3 \rightarrow 2Ag + \frac{1}{2} O_2 + CO_2 \\ HgCO_3 \rightarrow Hg + \frac{1}{2} O_2 + CO_2 \\ \hline \\ \textbf{Case-3:} \\ Li_2CO_3 \rightarrow Li_2O + CO_2 \\ \hline \\ \textbf{CaCO_3 \rightarrow CaO + CO_2} \\ \hline \\ \textbf{Case-4:} (NH_4)_2 CO_3 \rightarrow 2NH_3 + CO_2 + H_2O \end{array}$

Q. Calculate the residue obtained on strongly heating 2.76 g of Ag₂CO₃?

<u>Sulphate</u>

Case 1:

$$\begin{array}{c} Na_2SO_4\\K_2SO_4\\Rb_2SO_4\\Cs_2SO_4 \end{array} \xrightarrow{\Delta} no \text{ effect}$$

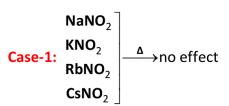
Case 2:

 $Ag_2SO_4 \rightarrow Ag + O_2 + SO_3$

 $HgSO_4 \rightarrow Hg + O_2 + SO_3$

Case 3:

 $Li_2SO_4 \rightarrow Li_2O + SO_3$ $ZnSO_4 \rightarrow ZnO + SO_3$ Case-4: (NH₄)₂ SO₄ \rightarrow 2NH₃ + SO₃ + H₂O * 2FeSO₄ \rightarrow Fe₂O₃ + SO₂ + SO₃


<u>Nitrate</u>

Case-1:
$$\begin{bmatrix}
NaNO_{3} \\
KNO_{3} \\
RbNO_{3} \\
CsNO_{3}
\end{bmatrix}^{\Delta} \rightarrow MNO_{2} + O_{2}$$

$$\begin{bmatrix}
NaNO_{3} \\
KNO_{3} \\
RbNO_{3} \\
CsNO_{3}
\end{bmatrix}^{\Delta} \rightarrow M_{2}O + N_{2} + O_{2}$$

Case-2: $AgNO_3 \rightarrow Ag + NO_2 + \frac{1}{2}O_2$ $Hg (NO_3)_2 \rightarrow Hg + 2NO_2 + O_2$ Case-3: $2LiNO_3 \rightarrow Li_2O + 2NO_2 + \frac{1}{2}O_2$ $Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$ Case-4: $NH_4NO_3 \rightarrow N_2O + 2H_2O$

<u>Nitrite</u>

Case-2:

 $\begin{array}{l} AgNO_2 \rightarrow Ag + NO_2 \\ Hg (NO_2)_2 \rightarrow Hg + 2NO_2 \\ \hline \\ \textbf{Case-3:} \\ 2LiNO_2 \rightarrow Li_2O + NO_2 + NO \\ Mg(NO_2)_2 \rightarrow MgO + NO_2 + NO \\ \hline \\ \textbf{Case-4:} NH_4NO_2 \rightarrow N_2 + 2H_2O \end{array}$

Q. PbCl₂ is insoluble in cold water, but soluble in hot water.

- Q. Which is more soluble in aqueous medium A. NaHCO₃
- B. KHCO₃
- C. RbHCO₃
- D. CsHCO₃

Q. Arrange CaC₂O₄, SrC₂O₄, BaC₂O₄ According to there increasing order of solubility. Q. Anhydrous AlCl₃ is covalent. From the data given below, predict whether it would remain covalent or become ionic in aqueous solution. (Ionization energy for AlCl₃ = 5137 kj mol⁻¹; $\Delta H_{Hydratio}$ n for Al³⁺ = -4665 kj mol⁻¹; $\Delta H_{Hydration}$ for Cl⁻ = -381 kj mol⁻¹)

Solubility

The molar heat of solution ($\Delta Hsoln$) of a substance is the heat absorbed or released when one mole of the substance is dissolved in water.

$$\begin{array}{c} & \Delta H_{sol} \rightarrow M^{+}_{(aq)} + X_{(aq)} \\ & & & \uparrow \\ & & & \uparrow \\ & & & \downarrow \\ & & & \downarrow$$

According to hess' law :

$$\Rightarrow \Delta H_{sol} = L \cdot E_{MX} - |\Delta H_{hyd}|_{M^+} - |\Delta H_{hyd}|_{X^-}$$

$$\Rightarrow \Delta H_{sol} = L \cdot E_{MX} - |\Delta H_{hyd}|_{MX}$$

Dissolution of salt in water:

 $\Rightarrow \Delta G = \Delta H - T \Delta S$ Generally, for dissolution of salt , $\Delta S > 0$

Case 1:

If dissolution of salt is exothermic in nature ($\Delta H < 0$),

Then, ΔG is always less than zero.

These type of salts is always soluble in water at any temperature.

Case 2:

If dissolution of salt is endothermic in nature ($\Delta H > 0$),

Then, value of ΔG depends on temperature

(i). at low temperature

 $|\Delta H| > |T\Delta S|$ $|\Delta G| > 0,$

Insoluble at low temperature.

(ii). at high temperature $|\Delta H| < |T\Delta S|$ $\Delta G < 0$,

soluble at high temperature. Solubility of salt = f^n (Lattice energy & ΔH_{hyd})

Trends of solubility:

Case 1:generally, Solubility of salts of Group1 and group 2 metals containing

 $SO_4^{2-}, CO_3^{2-}, HCO_3^{-}, HSO_4^{-}, CO_3^{2-}, CrO_4^{2-}, Cr_2O_7^{2-}, NO_3^{-}, C_2O_4^{2-}, MnO_4^{-}, S_2O_3^{2-}, I^{-}etc.$

decreases on moving down the group.

Exception:

Solubility of $SO_4^{2-}, CO_3^{2-}, HCO_3^-, HSO_4^-$ of alkali

metal and $C_2 O_4^{2-}$ of alkaline earth metal increases down the group.

Case 2: generally, Solubility of salts of Group1 and group 2 metals containing

 $OH^-, F^- \& O^{2-} etc.$ increases on moving down the group.