Compound Interest is an important topic asked under the Arithmetic section in Mathematics. It is asked in various Defence Exams such as CDS, AFCAT, Air Force Group X \& Y etc

We will discuss the basic questions that are usually asked in this topic and how you can solve them using the normal as well as Shortcut approach.

Tips \& tricks on Compound Interest

Now, Let's discuss the basic difference between Simple Interest and Compound

 Interest.Principal $=1000$, rate of interest $(r)=10 \%$, time $=3 y r s$
Simple Interest
SI for $1^{\text {st }} \mathrm{yr}=(1000 \times 10 \times 1) / 100=100$,
SI for $2^{\text {nd }} \mathrm{yr}=100\left(\right.$ In SI it will be the same as $\left.1^{\text {st }} \mathrm{yr}\right)$
SI for $3^{\text {rd }} \mathrm{yr}=100$

Compound Interest:

CI for $1^{\text {st }} \mathrm{yr}=100$
CI for $2^{\text {nd }} \mathrm{yr}$ will not be same as $1^{\text {st }} \mathrm{yr}$ because principal for $2^{\text {nd }} \mathrm{yr}$ is the amount of $1^{\text {st }} \mathrm{yr}$. So, CI (2nd $y r)=(1100 \times 10 \times 1) / 100=110$
CI for $3^{\text {rd }} \mathrm{yr}$ will also not be the same as $1^{\text {st }} \mathrm{yr}$ and $2^{\text {nd }} \mathrm{yr}$ because principal for $3^{\text {rd }} \mathrm{yr}$ is the amount of $2^{\text {nd }} \mathrm{yr}$.
principal ($\left.3^{\text {rd }} \mathrm{yr}\right)=$ Amount $\left.\left(2^{\text {nd }} \mathrm{yr}\right)=\operatorname{Principal(2nd} \mathrm{yr}\right)+\operatorname{Interest}\left(2^{\text {nd }} \mathrm{yr}\right)=1100+110=$ 1210
CI ($\left.3^{\text {rd }} \mathrm{yr}\right)=(1210 \times 10 \times 1) / 100=121$
Hence total CI for $3 y r s=100+110+121=331$
Amount after 3 yrs = 1331
Interest is always calculated on the Principal. But in the case of CI, the Principal is get changed every year.

Also Check: Tips \& Tricks on Simple Interest

If we calculate it by net rate concept then the Principal will remain the same.
Concept1: How to calculate net CI rate for 2 years?
Let rate is r\% per annum for 2 years
Net CI rate for 2 yrs can be calculated by $=2 \mathrm{r}+\left(\mathrm{r}^{2} / 100\right)$
If rate is 1%, net CI rate for $2 \mathrm{yrs}=2 \times 1+\left(1^{2} / 100\right)=2.01 \%$
If rate is 3%, net CI rate for $2 \mathrm{yrs}=2 \times 3+\left(3^{2} / 100\right)=6.09 \%$
If rate is 14%, net CI rate for $2 \mathrm{yrs}=2 \times 14+\left(14^{2} / 100\right)=29.96 \%$

We suggest you learn the table given below:

\% Rate per annum	Net CI rate for 2 yrs	\% Rate per annum	Net CI rate for 2 yrs
2%	4.04%	9%	18.81%
3%	6.09%	10%	21%
4%	8.16%	11%	23.21%
5%	10.25%	12%	25.44%
6%	12.36%	13%	27.69%
7%	14.49%	14%	29.96%
8%	16.64%	15%	32.25%

Concept 2: How to calculate net CI rate for 3 years?
Let rate is r\% per annum for 3 years
Net CI rate for $3 y r s$ can be calculated $=3 r+3\left(r^{2} / 100\right)+\mathbf{1}\left(r^{3} / 10000\right)$
If rate is 3% p.a., net CI rate for 3 yrs
$=\mathbf{3} \times 3+\mathbf{3}(9 / 100)+\mathbf{1}(27 / 10000)$
$=9+.27+.0027=9.2727$
If rate is 12% p.a., net CI rate for 3 yrs
$=3 \times 12+3(144 / 100)+1(1728 / 10000)$
$=36+4.32+.1728$
$=40.4928$
Representation while calculating net rate \%.
Let's calculate it for the rate 3% p.a.
write, $\mathrm{r} / \mathrm{r}^{2} / \mathrm{r}^{3}=3 / 9 / 27$
then, $3 r / 3 r^{2} / 1 r^{3}=9 / 27 / 27$
$=9.2727$
We suggest you learn the table given below:

\% Rate per annum	Net CI rate for 3 yrs	\% Rate per annum	Net CI rate for 3 yrs
1%	3.31%	6%	19.1016%
2%	6.1208%	7%	22.5043%
3%	9.2727%	8%	25.9712%
4%	12.4864%	9%	29.5029%
5%	15.7625%	10%	33.10%

Concept3: If the r\% p.a. is in fraction:
Example: if rate is $16(2 / 3) \%$ and principal is 216 , then calculate CI for $2 y r s$ and 3yrs.
Solution: We can write $16(2 / 3) \%=1 / 6$ (Discussed in percentage study notes)
For 2 years
$216 \times(1 / 6)=36$, Now multiply 36 by $2=72$
$36 \times(1 / 6)=6$, multiply 6 by $1=6$

Add both the above value $=72+6=78$
CI for $2 \mathrm{yrs}=78$
For 3 years
$216 \times(1 / 6)=36$, Now multiply 36 by $3=108$
$36 \times(1 / 6)=6$, multiply 6 by $3=18$
$6 \times(1 / 6)=1$, multiply 1 by $1=1$
Add all the above values $=(108+18+1)=127$
CI for $3 y r s=127$
Concept4: When r\% is given p.a. and CI has to be calculated half-yearly or quarterly basis.

Yearly	factor	$\mathrm{r} \%($ per annum $)$	Time (n yrs)
Half yearly	6 months $=(6 / 12)$ $=1 / 2$	Factor $\times \mathrm{r} \%=(\mathrm{r} / 2) \%$	2 n
Quarterly	3months $=(3 / 12)$ $=1 / 4$	$(1 / 4) \times \mathrm{r} \%=(\mathrm{r} / 4) \%$	4 n
9 months	9 months $=(9 / 12)=$ $3 / 4$	$(3 / 4) \times \mathrm{r} \%=(3 \mathrm{r} / 4) \%$	$4 \mathrm{n} / 3$
8 months	8 months $=(8 / 12)=$ $2 / 3$	$(2 / 3) \times \mathrm{r} \%=(2 \mathrm{r} / 3) \%$	$3 \mathrm{n} / 2$

Ready for CDS II 2019? Attempt this free mock Nowl

Example: If r\% = 10\% per annum. Find the CI on 5000 for 2 years if it is compounded half-yearly.
Solution: Rate is calculated half yearly so new $\mathrm{r} \%=(10 / 2) \%=5 \%$
Given time is 2 yrs, acc.to half yearly, it will be $2 \times 2=4$
Now we have to calculate CI for 4yrs @ 5\%
We know $5 \%=(1 / 20)$
So, $5000 \times(1 / 20)=250$, multiply 250 by $4=1000$
$250 \times(1 / 20)=12.5$, multiply 12.5 by $6=75$
$12.5 \times(1 / 20)=0.625$, multiply 0.625 by $4=2.5$
$0.625 \times(1 / 20)=.03125$ multiply .03125 by $1=.03125$
Add all the above values
(1000+75+2.5+0.03125)
$=1077.53125$
Concept5: When different rates are given for 2 years.
If $\mathrm{a} \%$ is given for $1^{\text {st }}$ year and $\mathrm{b} \%$ is given for $2^{\text {nd }}$ year.
Net rate of CI for $2 \mathrm{yrs}=(\mathrm{a}+\mathrm{b}+\mathrm{ab} / 100) \%$ (discussed in percentage study notes)
Note: The net CI rate will be the same if $\mathrm{b} \%$ is given for $1^{\text {st }}$ year and $\mathrm{a} \%$ is given for $2^{\text {nd }}$ year.

Example: If principal is 1000 Rs and $r\left(1^{\text {st }} \mathrm{yr}\right)=4 \%$ and $\mathrm{r}\left(2^{\text {nd }} \mathrm{yr}\right)=6 \%$. Calculate the CI after 2 yrs .

Solution:

Net CI rate $=4+6+(4 \times 6) / 100$
= 10.24\%
Now CI $=1000 \times 10.24 \%=102.4$ Rs
Concept6: When difference between CI and SI is given.
We know, net CI for $2 \mathrm{yrs}=2 \mathrm{r}+\left(\mathrm{r}^{2} / 100\right) \%$,
net SI for 2 yrs $=2 \mathrm{r} \%$
So, difference $=\left(r^{2} / 100\right) \%$
Example: If difference between CI and SI is Rs. 10 and the principal is Rs.1000.Calculate the rate \% per annum.
Solution: difference = 10 Rs.
So difference\% $=(10 / 1000) \times 100=1 \%$
We know that, if rate of interest is 10%
then, net CI rate (2 yrs) $=21 \%$
net SI rate (2 yrs) $=20 \%$
difference = 1%
Definitely we can say r\% per annum is 10%.
Example: Calculate the difference between CI and SI for 3 yrs if Principal $=8000$ and $\mathrm{r}=$ 6\% p.a.
Solution: Net rate CI(3yrs) = 19.1016\%
Net rate SI (3yrs) = 18\%
Difference $=1.1016 \%$
So, difference $=1.1016 \%$ of $8000=88.128$
Example: If difference between CI and SI is Rs. 64 and r $=8 \%$ p.a.. Calculate the Principal and Amount?
Solution: If $\mathrm{r}=8 \%$ p.a.
then, net rate CI (2yrs) - net rate SI (2yrs)
$=16.64 \%-16 \%=0.64 \%$
Given, difference is Rs. 64
So, $0.64 \%=64$
$100 \%=10000$
Hence, Principal is 10000 Rs.
Amount $=$ principal $\times(116.64 \%)=10000 \times 116.64 \%=$ Rs. 11664
Concept7: Calculation of Instalment

For 2 yrs: If $r \%$ is given, convert it into fraction (a / b) then, Instalment $\times \frac{b}{a+b} \times \frac{b+a+b}{a+b}=$ Principal

Example: A man borrowed Rs.8,400 at 10\% p.a. CI. He pays equal annual repayment of X rs and clear off his debts in 2 yrs . What is the value of X ?

Solution: Given $r=10 \%=(1 / 10)$ Instalment $\times \frac{10}{11} \times \frac{10+11}{11}=8400$ $\mathrm{X} \times \frac{10}{11} \times \frac{21}{11}=8400$ $X=4840$ Rs.
 For 3 yrs : If $\mathrm{r} \%$ p.a. is given, convert it into fraction(a/b)

$$
\text { Instalment } \times \frac{b}{a+b}\left[\frac{b^{2}+(a+b)^{2}+b(a+b)}{(a+b)^{2}}\right]=\text { Principal }
$$

Example: A man borrowed Rs. 1820 at 20\% p.a. CI. He pays equal annual repayment of X rs and clear off his debts in 3 yrs. What is the value of X ?

Solution: Given $r=20 \%=(1 / 5)$

Instalment $\times \frac{5}{5+1}\left[\frac{5^{2}+(1+5)^{2}+5(1+5)}{(1+5)^{2}}\right]=1820$
$X \times \frac{5}{6} \times \frac{5^{2}+6^{2}+5 \times 6}{6^{2}}=8400$
$X \times \frac{5}{6} \times \frac{91}{36}=8400$
$\mathrm{X}=864$
Formulas:
Amount $=\mathbf{P}\left(1+\frac{r}{100}\right)^{n}$
Difference between Cl and SI for $2 \mathrm{yrs}=\mathrm{P} \times\left(\frac{r}{100}\right)^{2}$
Difference between Cl and SI for $3 \mathrm{yrs}=\mathrm{P} \times\left(\frac{r}{100}\right)^{2} \times\left(\frac{300+r}{100}\right)$
Where $\mathbf{P}=$ Principal, $r=$ rate of interest and $\mathrm{n}=\mathrm{no}$. of yrs

