Top 50 Maths Questions for NDA II 2019 exam

1. Ans. B.
to find the relation between roots, we have $b^{2}-4 a c$
Here $a=a 9 b-c), b=b(c-a), c=c(a-b)$
Assume it has equal roots
Then $[b(c-a)]^{2}-4 * a(b-c) * c(a-b)=0$
$b^{2} c^{2}+b^{2} a^{2}+4 a^{2} c^{2}+2 a c b^{2}-4 a^{2} b c-4 a b c^{2}=0$
This is similar to $a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2}$
So, $(b c+b a-2 a c)^{2}=0$
$b c+b a-2 a c=0$
$b c+b a=2 a c$
$b=2 a b /(a+b)$
a, b, care in H.P
Hence the assumption is correct, and the equation has equal roots.
2. Ans. C.
the given terms 2, 5, 8, ... are in A.P
Common difference $d=3$; first term $a=2$
Then $200^{\text {th }}$ term is given by $\mathrm{a}_{200}=\mathrm{a}+(\mathrm{n}-1) * \mathrm{~d}$
$a_{200}=2+(200-1) * 3$
$a_{200}=599$.
3. Ans. A.

If the teacher has x questions then the number of ways, she can arrange is x !

The least value of x that satisfies the question is 5 .

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests
$5!=120>27$.
4. Ans. B.
given $\log \left(1+3 x+2 x^{2}\right)$
On factorization of quadratic equation, $\log ((1+x)(1+2 x))$
$=\log (1+x)+\log (1+2 x)$
We know x^{n} in $\log (1+x)$ expansion is $(-1)^{n+1} x^{n} / n$
From (1) \& (2), coefficient of x^{n} is
$=(-1)^{n+1} x^{n} / n+(-1)^{n+1}(2 x)^{n} / n$
$=(-1)^{n+1}\left(1+2^{n}\right) x^{n} / n$
$=$ so the coefficient of x^{n} is $(-1)^{n+1}\left(1+2^{n}\right) / n$
5. Ans. A.

Recall, Mean = Sum of all items/ (total number of items)
Lowering both numerator and denominator will decrease the mean.
Median being the middle number will not be affected
If the values you removed from the end happens to be the values that repeated the most, then modes can can be affected as well.
6. Ans. B.
the series follows as $0=1^{3}-1$
$5=2^{3}-3$
$22=3^{3}-5$
$57=4^{3}-7$
$116=5^{3}-9$
$205=6^{3}-11$
7. Ans. D.

Given that $\mathrm{A}^{5}=0$ and an $\neq \mathrm{I}$ for $1<=\mathrm{n}<=4$
Let $B=I+A+A^{2}+A^{3}+A^{4}$
[Given that an is not equal to I for n greater than or equal to 1 and less than equal to 4]

Now $(I-A) * B=(I-A) *\left(I+A+A^{2}+A^{3}+A^{4}\right)$
$=>(I-A)^{* B}=I+A+A^{2}+A^{3}+A^{4}-A-A^{2}-A^{3}-A^{4}-A^{5}$
$=>(\mathrm{I}-\mathrm{A}) * \mathrm{~B}=\mathrm{I}-\mathrm{A}^{5}$
$=>(I-A) * B=I($ since $A 5=0)$
Now left multiply (I - A)-1 on both sides, we get
$(\mathrm{I}-\mathrm{A})-1 *(\mathrm{I}-\mathrm{A}) * \mathrm{~B}=(\mathrm{I}-\mathrm{A})-1 * \mathrm{I}$
$=>B=(I-A)-1$
$=>(\mathrm{I}-\mathrm{A})-1=\mathrm{B}$
$=>(I-A)-1=I+A+A^{2}+A^{3}+A^{4}$
8. Ans. B.

2 tests will be needed to find the faulty machines if we can find one faulty machine in each test

Probality that we will test a faulty machine in first test is $2 / 4=1 / 2$ (there are 4 machines and 2 of them faulty)

Now that one faulty machine has been identified we are left with 3 machines with one of them being faulty. Probaility that we will test the other faulty machine in second test is $1 / 3$.so probability that we will require 2 tests to find the faulty machines is $1 / 2 * 1 / 3=1 / 6$
9. Ans. A.

Recall, Mean $=$ Sum of all items/ (total number of items)
Lowering both numerator and denominator will decrease the mean.
Median being the middle number will not be affected

Gradeup Green Card

If the values you removed from the end happens to be the values that repeated the most, then modes can can be affected as well.
10. Ans. A.

Let $f(x)=a x^{2}-b x+c=0$
$f(2)=4 a-2 b+c<0$
$f(0)=c>0$
so we can see that the sign of $f(x)$ changes, when x changes from 0 to 2 . So it haws root in the interval $(0,2)$
11. Ans. D.
$z-1 / z+1=x+i y-1 / x+i y+1$
$z-1 / z+1=x^{2}+y^{2}-1+2 i y / x^{2}+y^{2}+2 x+1$
$\operatorname{Re}(z-1 / z+1)=x^{2}+y^{2}-1 / x^{2}+y^{2}+2 x+1=0$
$x^{2}+y^{2}=1$
Also $z z^{\prime}=x^{2}+y^{2}=1$
$z z^{\prime}=|z|^{2}$
$|z|^{2}=1$
$|z|=1$
12. Ans. A.
$z=(\sqrt{3} / 2+i / 2)^{107}+(\sqrt{3} / 2+-i / 2)^{107}$
$\cos \pi / 6=\sqrt{3} / 2, \sin п / 6=1 / 2$
$z=(\cos \pi / 6+i \sin \pi / 6)+(\cos \pi / 6-i \sin \pi / 6)$
$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
$Z=\cos (107 \pi / 6)+i \sin (107 \pi / 6)+\cos (107 \pi / 6)-i \sin (107 \pi / 6)$
$z=2 \cos (107 \pi / 6)$

Gradeup Green Card

$$
\operatorname{im}(z)=0
$$

13. Ans. D.
$\mathrm{f}(\theta) * \mathrm{f}(\Phi)=$

*

$\cos \theta$	$-\sin \theta$	0				
$\sin \theta$	$\cos \theta$	0				
0	0	1	\quad	$\cos \Phi$	$-\sin \Phi$	0
:---	:---	:---				
$\sin \Phi$	$\cos \Phi$	0				
0	0	1				

$\cos \theta \cdot \cos \Phi-\sin \theta \sin \Phi$	$-\cos \theta \cdot \sin \Phi-\sin \theta \cdot \cos \Phi$	0
$\sin \theta \cdot \cos \Phi+\cos \theta \cdot \sin \Phi$	$\sin \theta \cdot \cos \Phi+\cos \theta \cos \Phi$	0
0	0	1

$\cos (\theta+\Phi)$	$-\sin (\theta+\Phi)$	0
$\sin (\theta+\Phi)$	$\cos (\theta+\Phi)$	0
0	0	1

$f(\theta) * f(\Phi)=f(\theta+\Phi)$
$\operatorname{det}[f(\theta) * f(\Phi)]=1\left[\cos ^{2}(\theta+\Phi)+\sin ^{2}(\theta+\Phi)\right]=1$
$\operatorname{det}(f(x))=\cos ^{2} x-\left(-\sin ^{2} x\right)=\cos ^{2} x+\sin ^{2} x=1$
for $x=-x$, $\operatorname{det} f(-x)=\cos ^{2}(-x)-\left(-\sin ^{2}(-x)\right)=\cos ^{2} x+\sin ^{2} x=1$
$\operatorname{detf}(-x)=\operatorname{detf}(x)$
$f(x)$ is even function.
14. Ans. A.
$=$

1	1	1
1	-1	2
3	-1	5

x
y
z

8
6
k

$|A|=1(-5+2)-1(5-6)+1(-1+3)=0$
$\operatorname{Adj}(A)=$

Gradeup Green Card

3	-6	3
1	2	-1
2	4	-2

$-24-36+15$
$8+12-15$
$16+24-30$
5
10

For $k=15,(\operatorname{adj} A) B=$
$=\neq 0$

System is inconsistent and has no solution
For $\mathrm{k}=20,(\operatorname{adj} \mathrm{~A}) \mathrm{B}=$

$-24-36+60$
$8+12-20$
$16+24-40$

0
0
0

$==0$
System has infinitely many solutions
15. Ans. D.

$a-x$	c	b
c	$b-x$	a
b	a	$c-x$

$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}a+b+c^{-} \\
x\end{array}
$$ \& a+b+c^{-}

x\end{array}\right)\)| $a+b+c^{-}$ |
| :--- |
| x |$=0$

1	1	1		
c	$\mathrm{b}-\mathrm{x}$	a		
b	a	$\mathrm{c}-\mathrm{x}$	\quad	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{x})=0$
:---				

$(a+b+c-x)(1(b-x)(c-x)-1(c(c-x))+1(a c(b(b-x))=0$
$(-x)\left(b c-b x-x c+x^{2}-a^{2}-c^{2}+x c+a b+a c-b^{2}+b x\right)=0$
$(x)\left(a b+b c+a c-a^{2}-b^{2}-c^{2}\right)=0$

Gradeup Green Card

$x\left(x^{2}+a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0$
$x\left(x^{2}-(a-b)^{2}-(b-c)^{2}-(c-a)^{2}\right)=0$
$x=0$
16. Ans. B.
$B=\operatorname{adj} A, I=$ identity matrix, $|A|=k$
$A B=A(\operatorname{adj} A)=|A| I=k I$
17. Ans. B.

Matrix product is commutative if both are diagonal matrices of same order
$A^{2}-B^{2}=(A+B)(A-B)$ is not true
Next, $(A+1)(A-1)=0$
$A^{2}+A I-I A-I^{2}=0(A I=I A)$
$\mathrm{A}^{2}=\mathrm{I}$ is correct
18. Ans. A.
$\left[\begin{array}{ccc}\mathrm{x} & -3 \mathrm{i} & 1 \\ \mathrm{y} & 1 & \mathrm{i} \\ 0 & 2 \mathrm{i} & -\mathrm{i}\end{array}\right]=6+11 \mathrm{i}$,
$x\left(-i-2 i^{2}\right)+3 i(-i y)+2 i y=6+11 i$
$-i x+2 x+3 y+2 i y=6+11 i$
$(-x+2 y) i+2 x+3 y=6+11 i$
$-x+2 y=11$
$-x+8=11$
$-x=3$
$x=-3$
$2 x+3 y=6$

Gradeup Green Card

Subsitiute $x=-3$ in above equation
Then, we get $y=4$
19. Ans. A.
A and B are $\left(3^{\times 3}\right)$ matrices and $\operatorname{det} A=4$ and $\operatorname{det} B=3$
We know $|K A|=K^{n}|A|$
$\operatorname{det}(2 A B)=2^{3 \times} 4 \times 3$
$=96$.
20. Ans. A.

For $(3+x)^{6}$,
$a=3, b=x$ and $n=6$
As n is even, $\left(\frac{n+2}{2}\right)^{t h}$ is the middle term
Therefore, the middle term $=\left(\frac{6+2}{2}\right)^{t h}=\left(\frac{8}{2}\right)^{t h}=(4)^{t h}$
General term t_{r+1} is given by
$\mathrm{t}_{\mathrm{r}+1}=\binom{n}{r} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
therefore, for $4^{\text {th }}, r=3$
therefore the middle term is
$t_{4}=t_{3+1}$
$=\binom{6}{3}(3)^{6-3}(x)^{3}$
$=\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \cdot(3)^{3}(x)^{3}$
$=(20) .(27) x^{3}$
$=540 x^{3}$

Gradeup Green Card

21. Ans. B.

To find the $9^{\text {th }}$ term in the expansion of $\left(\frac{a}{b}-\frac{b}{2 a^{2}}\right)^{12}$
Formula used: (i) ${ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}$
(ii) $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

For $9^{\text {th }}$ term, $r+1=9$
$\Rightarrow r=8$
In, $\left(\frac{a}{b}-\frac{b}{2 a^{2}}\right)^{12}$
$9^{\text {th }}$ term $=\mathrm{T}_{8+1}$
$\Rightarrow{ }^{12} \mathrm{C}_{8}\left(\frac{a}{b}\right)_{12-8}\left(\frac{-b}{2 a^{2}}\right)_{8}$
$\Rightarrow \frac{12!}{8!(12-8)!}\left(\frac{a}{b}\right)^{4}\left(\frac{-b}{2 a^{2}}\right)^{8}$
$\Rightarrow 495\left(\frac{a^{4}}{b^{4}}\right)\left(\frac{b^{8}}{256 a^{16}}\right)$
$\Rightarrow\left(\frac{495 b^{4}}{256 a^{12}}\right)$
$\Rightarrow A N S:\left(\frac{495 b^{4}}{256 a^{12}}\right)$
22. Ans. C.

We have been given that 2 nd, 3 rd and 6 th terms of an AP are the three consecutive terms of a GP.

Let the three consecutive terms of the G.P. be $a, a r, a r^{2}$
Where a is the first consecutive term and r is the common ratio.
2nd, 3rd terms of the A.P. are a and ar respectively as per the question.
\therefore The common difference of the A.P. $=a r-a$

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests

And the sixth term of the A.P. $=a r^{2}$
Since the second term is a and the sixth term is ar^{2} (In A.P.)
We use the formula:t $=a+(n-1) d$
$\therefore a r^{2}=a+4(a r-a) \ldots$ (the difference between $2 n d$ and 6 th term is 4(ar a))
$\Rightarrow a r^{2}=a+4 a r-4 a$
$\Rightarrow a r 2+3 a-4 a r=0$
$\Rightarrow a\left(r^{2}-4 r+3\right)=0$
$\Rightarrow \mathrm{a}(\mathrm{r}-1)(\mathrm{r}-3)=0$
Here, we have 3 possible options:
1)a $=0$ which is not expected because all the terms of A.P. and G.P. will be 0 .
2) $r=1$, which is also not expected because all th terms would be equal to first term.
$3) r=3$, which is the required answer.
Ans: Common ratio $=3$
23. Ans. A.

To Find: what amount will he pay in the 30th instalment.
Given: first instalment $=10000$ and it increases the instalment by 500 every month.
\therefore So it form an AP with first term is 10000 , common difference 500 and number of instalment is 30

Formula Used: Tn = $a+(n-1) d$
(Where a is first term, Tn is nth term and d is common difference of given AP)
$\therefore \mathrm{Tn}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \Rightarrow \mathrm{Tn}=10000+(30-1) 500 \Rightarrow \mathrm{Tn}=10000+29 \times$ 500
$\mathrm{Tn}=10000+14500 \Rightarrow \mathrm{Tn}=24,500$
So, he will pay 24,500 in the 30th instalment.
24. Ans. D.
$\operatorname{Ln}(d y / d x)=a x+b y$
$d y / d x=e^{a x+b y}$
$d y / d x=e^{a x} e^{b y}$
$d y \cdot e^{-b y}=e^{a x} d x$
$e^{-b y} /-b+C_{1}=e^{a x} / a+C_{2}$
$e^{a x} / a+e^{-b y} / b=C_{2}-C_{1}=C$
25. Ans. A.
$\frac{d}{d x}\left(\sec ^{2}\left(\tan ^{-1} \mathrm{x}\right)\right)$
$\rightarrow 2 \sec \left(\tan ^{-1} x\right)\left(\sec \left(\tan ^{-1} x\right) \tan \left(\tan ^{-1} x\right)\right) \cdot 1 / 1+x^{2}$
$\left[\frac{d}{d x}\left(\sec ^{2} x\right)=2 \sec x(\sec x \tan X)\right]$
$\tan ^{-1} x=t$
$\rightarrow 2 \sec (t)($ sect $) x \cdot 1 / 1+x^{2}$
$\rightarrow 2 \sec ^{2} \mathrm{t} . \mathrm{x} / 1+\mathrm{x}^{2}$
$\rightarrow 2\left(1+\tan ^{2}\left(\tan ^{-1} x\right)\right) \cdot x / 1+x^{2}$
$\rightarrow 2\left(1+x^{2}\right) \cdot x / 1+x^{2}=2 x$
26. Ans. C.
$y=\sin (\ln x)$
$\frac{d y}{d x}=\cos (\ln x) \cdot \frac{1}{x}$
$=\frac{d^{2} y}{d x^{2}}=\left(x(-\sin (\ln x))\left(\frac{1}{x}\right)-\cos (\ln x)(1)\right) / x^{2}$

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests
$=x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)=-y-x \frac{d y}{d x}$
$=x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
27. Ans. B.

Given $d y / d x=-x^{2}-1 / x^{3}$
On integrating
$y=-x^{3} / 3+1 / 2 x^{2}+C$
the curve passes throughu $(-1,-2)$, substitute in above equation
$-2=1 / 3+1 / 2+C$
$C=-17 / 6$
So, $y=-x^{3} / 3+1 / 2 x^{2}-17 / 6$
On rearranging, $6 x^{2} y+17 x^{2}+2 x^{5}-3=0$
28. Ans. C.
$=y=m x+c$
$=m x-y+c=0$ is at unit distance from the origin
$=\frac{|m(0)-(0)+c|}{\sqrt{m^{2}+(-1)^{2}}}=1$
$=c=\sqrt{1+\mathrm{m}^{2}}$
$=\left[y-x \frac{d y}{d x}\right]^{2}=c^{2}=1+m^{2}=1+\left[\frac{d y}{d x}\right]^{2}$
29. Ans. B.
$y=\operatorname{csin} x$
Area $=\int_{0}^{\pi} \operatorname{csin} x d x$
$=\mathrm{C}[-\cos x]^{\square}$ 。

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests
$=-c(-1-1)=2 c$
30. Ans. C.

Put $\cos ^{2} x=t$
$2 \cos x(-\sin x)=d t / d x$
$\operatorname{Sin} 2 x d x=-d t$
$I=-\int e^{t} d t$
$I=-e^{t}+c$
$I=-e^{\cos ^{2} x}+c$
31. Ans. B.
$X^{2}=6 y$ is a upward parabola with vertex $(0,0)$ and $x^{2}+y^{2}$
$=16$ is a circle with centre $(0,0)$ and radius is 4
by solving both the equation we got $(-2 \sqrt{3}, 2)$ and $(2 \sqrt{3}, 2$
required area $=2 x$ area of $O B C O$
$=2($ area of ODBCO - area ODBO $)$
$=2\left\{\int_{0}^{2 \sqrt{3}} \sqrt{16-\mathrm{x}^{2}} \mathrm{dx}-\int_{0}^{2 \sqrt{3}} \frac{\mathrm{x}^{2}}{6} \mathrm{dx}\right\}$
$=2\left[\left\{\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x^{2}}{4}\right\}_{0}^{2 \sqrt{3}}-\frac{1}{6}\left(\frac{x^{3}}{3}\right)_{0}^{2 \sqrt{3}}\right]$
$=2\left[\left(\frac{2 \sqrt{3}}{2} \sqrt{16-2 \sqrt{3}^{2}}\right.\right.$
$\left.\left.+\frac{16}{2} \sin ^{-1} \frac{2 \sqrt{3}}{4}\right)-\left(\frac{0}{2} \sqrt{16-0^{2}}+\frac{16}{2} \sin ^{-1} \frac{0}{4}\right)-\frac{1}{6}\left\{\frac{2 \sqrt{3}^{3}}{3}-0\right\}\right]$
$=\frac{16 \pi+4 \sqrt{3}}{3}$ square units

32. Ans. A.

Given equation $2 y=5 x+7$
$y=\frac{5 x+7}{2}$
$-5 x+2 y=7$
$\sqrt{\frac{x}{-\frac{7}{5}}+\frac{y}{\frac{7}{2}}}=1$
Required area=
$\int y d x=\int_{2}^{8} \frac{5 x+7}{2} d x=\frac{1}{2} \int_{2}^{8} 5 x+7 d x=\frac{1}{2}\left[\frac{5 x^{2}}{2}+7\right]_{2}^{8}=96$ square units
33. Ans. B.
$\int_{2000}^{P} d P=\int_{0}^{25} 100-12 \sqrt{x} d x$
$(P-2000)=25 \times 1000-\frac{12 \times 2}{3} 25^{\frac{3}{2}}=3500$
34. Ans. A.

By solving two parabolas equation we got $(0,0)$ and $(4,4)$
Draw AD as perpendicular on OX
Required area=area of OCABO=area of OBADO-area OCADO
$=$
$\int_{0}^{4} y 1 d x-\int_{0}^{4} y 2 d x=\int_{0}^{4} 2 \sqrt{x} d x-\int_{0}^{4} \frac{x^{2}}{4} d x=\left[2 \times \frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\left[\frac{32}{3}-\frac{16}{3}\right]=$
$\frac{16}{3}$ square units
35. Ans. A.
$=$ Given, $x d y=y d x+y^{2} d y$
$=1=\frac{4}{x} \cdot \frac{d x}{d y}+\frac{y^{2}}{x}$

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests

$$
=\frac{d x}{d y}+x=\frac{x}{y}
$$

$=\frac{d x}{d y}-\frac{x}{y}=-y$
$=\mathbf{P}=-\frac{1}{y}, \mathbf{Q}=-\mathbf{y}$
$=$ Integrating factor $=\mathbf{e}^{\int \text { Pdy }}=\mathbf{e}^{-\log y}=1 / y$
$=\frac{1}{y} \frac{d x}{d y}-\frac{x}{y^{2}}=-1$
.Multiply the equation with Integrating factor

$$
\begin{aligned}
& \frac{x}{y}=\int \frac{1}{y}(-y) d y+c \\
& =\frac{x}{y}=\int-1 d y+C \\
& \frac{x}{y}=-y+c \\
& =y(1)=1 \\
& =\frac{1}{1}=-1+c ; c=2 \\
& =\frac{x}{y}=-y+2 ; x=-y^{2}+2 y \\
& =y(-3) ;-3=-y^{2}+2 y \\
& =y^{2}-2 y-3=0 \\
& =y=\frac{+2 \pm \sqrt{4+12}}{2}=\frac{2 \pm 4}{2} \\
& =y=3,-1 \\
& =y=3, \text { since } y>0
\end{aligned}
$$

36. Ans. C.

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests

We have $x^{2}+6 x-7<0$ à $(x-1)(x+7)<0$ à $x \in(-7,1)$
$x^{2}+9 x+1>0$ à $(x+2)(x+7)>0$ à $x \in(-\propto,-7) U(-2, \propto)$
$A \cap B=\{x \in R ;-2<x<a\}$ à it is true.
$A-B=\{x \in R ;-7<x<-2\}$ à true

37. Ans. C.

Here the maximum number of students failed in all the four subjects $=$ 15\%

But minimum number of students failed in al four subjects varies from 0 to 15%.

So correct option is C
38. Ans. C.

On differentiating option C we can get the original differential equation
$=y-x+\ln (x+y)=c$
.On differentiating the equation

$$
\begin{aligned}
& =1-\frac{d x}{d y}+\left(\frac{1}{x+y}\right)\left(1+\frac{d x}{d y}\right)=0 \\
& =1-\frac{d x}{d y}+\frac{1}{x+y}+\frac{d x}{d y}\left(\frac{1}{x+y}\right)=0 \\
& =\frac{d x}{d y}\left(\frac{1}{x+y}-1\right)=-1-\frac{1}{x+y} \\
& =\frac{d x}{d y}\left(\frac{1-x-y}{x+y}\right)=\left(\frac{-x-x-1}{x+y}\right) \\
& =\frac{d x}{d y}=\frac{1+x+y}{x+y-1}
\end{aligned}
$$

39. Ans. D.

Let $\sin \mathrm{x}=\mathrm{t}$

Gradeup Green Card

$$
\begin{aligned}
& =\lim _{x \rightarrow \pi / 6} \frac{2 x^{2}+x-1}{2 x^{2}-3 x+1} \\
& =\lim _{x \rightarrow \frac{\pi}{6}} \frac{(x+1)(2 x-1)}{(2 x-1)(x-1)} \\
& =\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin x+1}{\sin x-1} \\
& =\frac{0.5+1}{0.5-1} \\
& =-3
\end{aligned}
$$

40. Ans. B.

From projection formula
$=p=a \cos x+b \cos (90-x)$
$=p=a \cos x+b \sin x$ \qquad
$=\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}}$
$=(A B \cdot A C \cdot \cos x)+(B C \cdot B A \cdot \cos (90-x))+(C A \cdot C B \cdot \cos 90)$
$=(p \cdot a \cdot \cos x)+(y \cdot p \cdot \sin x)$
$=p[a \cos x+y \sin x]$
From (1)
$=\mathrm{p} * \mathrm{p}=\mathrm{p}^{2}$
41. Ans. C.

Point P is $(1,-1,2)$
Point Q is $(2,-1,3)$
$=\overrightarrow{\mathrm{r}}=(1-2) \hat{\imath}+(-1+1) \hat{\jmath}+(2-3) \hat{\mathrm{k}}$
$=\overrightarrow{\mathrm{r}}=-\hat{\mathrm{i}}+0 \hat{\jmath}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{F}}=3 \hat{\imath}+2 \hat{\jmath}-4 \hat{\mathbf{k}}$
Moment
$=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\jmath} & \hat{\mathrm{k}} \\ -1 & 0 & -1 \\ 3 & 2 & -4\end{array}\right|=\hat{\mathrm{i}}(0+2)-\hat{\jmath}(4+3)+\hat{\mathrm{k}}(-2+0)=2 \hat{\imath}-7 \hat{\jmath}-2 \hat{\mathrm{k}}$
42. Ans. C.

For simplicity lets take a, b, c as i, j, k
Now magnitude of A, B and C will be $\sqrt{3}$
43. Ans. A.

Only $\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CA}}=\overline{0}$ is correct, rest all the equation are not present in cyclic order

The above expression tells that the movement is from A to B, then from B to C , and then From C to the starting point. This type of Expression is not present in other options.
44. Ans. D.

Given lines $x-y-4=0$ and $2 x+3 y+7=0$
Point of intersection of $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is
$\left(b_{1} c_{2}-b_{2} c_{1} / a_{1} b_{2}-a_{2} b_{1}, c_{1} a_{2}-c_{2} a_{1} / a_{1} b_{2}-a_{2} b_{1}\right)$
$\left(-1 * 7-3 *(-4) / 1^{*} 3-2 *-1,(-4 * 2-7 * 1 / 1 * 3-2 *-1)\right.$
$(1,-3)$
Radius $=$ distance between $(1,-3)$ and $(2,4)$
$\left((1-2)^{2}+(3+4)^{2}\right)^{1 / 2}$
$=\sqrt{50}=5^{\sqrt{2}}$ units

45. Ans. A.

Substitute the line equation into ellipse equation:
$3 x+4 y=12 ; x=\frac{12-4 y}{3}$
So, $9\left(\frac{12-4 y}{3}\right)^{2}+16 y^{2}=144$
On solving we get, $\mathrm{y}=0,3$
For $y=0 ; x=4$
For $y=3 ; x=0$
Length of the chord $=\sqrt{(0-3)^{2}+(4-0)^{2}}=\sqrt{9+16}=5$ units
46. Ans. D.

Let $Q\left(x_{1}, y_{1}, z_{1}\right)$ be the image of the point P
The direction ratios of PQ are 3,-2, 2
Line equation will be $\frac{x+2}{3}=\frac{y-1}{-2}=\frac{z+5}{2}=r$
Let the point be $\mathrm{Q}(3 r-2,-2 r+1,2 r-5)$
Co ordinates thus forms are $x=3 r-2, y=-2 r+1, z=2 r-5$
$P Q=(3 r-2,-2 r+1,2 r-5)$
Midpoint of PQ is ($3 r / 2-2,1-r, r-5$)
It lies on the plane i.e., $3\left(\frac{3 r}{2}-2\right)-2(1-r)+2(r-5)+1=0$
On simplifying, we get $r=2$
$\mathrm{Q}=4,-3,-1)$

Gradeup Green Card

Mid point $=(1,-1,-3)$
So, $P Q=\sqrt{(-2-4)^{2}+(1+3)^{2}+(-5+1)^{2}}=\sqrt{68}$
$\mathrm{PQ}=2 \sqrt{17}>8$
47. Ans. C.

Let a, b, c be the direction ratios of the line then the equation thus formed will be
$\frac{x-5}{a}=\frac{y+6}{b}=\frac{z-7}{c}$
The above line is parallel to planes $x+y+z=1,2 x-y-2 z=3$
So, $a(1)+b(1)+c(1)=0, a(2)+b(-1)+c(-2)=0$
On solving we get

$$
=\frac{a}{-1}=\frac{b}{4}=\frac{c}{-3}=\lambda
$$

$a=-\lambda, b=4 \lambda, c=-3 \lambda$
Direction ratios are $<-1,4,-3>$
SO the equation is
$=\frac{x-s}{-1}=\frac{y+6}{4}=\frac{z-7}{-3}$
48. Ans. D.

Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Coordinates of foci $=(\pm 3,0) \ldots$ (ii)
We know that,
Coordinates of foci $=(\pm \mathrm{c}, 0) \ldots$ (iii)
\therefore From eq. (ii) and (iii), we get
$c=3$
We know that,
$C^{2}=a^{2}-b^{2}$
$\Rightarrow(3)^{2}=a^{2}-b^{2}$
$\Rightarrow 9=a^{2}-b^{2}$
$\Rightarrow b^{2}=a^{2}-9 \ldots$ (iv)
Given that ellipse passing through the points $(4,1)$
So, point $(4,1)$ will satisfy the eq. (i)
Taking point $(4,1)$ where $x=4$ and $y=1$
Putting the values in eq. (i), we get
$\frac{4^{2}}{a^{2}}+\frac{1^{2}}{b^{2}}=1$
$\frac{4^{2}}{a^{2}}+\frac{1^{2}}{a 2-9}=1$
$16 a^{2}-144+a^{2}=a^{2}\left(a^{2}-9\right)$
$\Rightarrow 17 a^{2}-144=a^{4}-9 a^{2}$
$\Rightarrow a^{4}-9 a^{2}-17 a^{2}+144=0$
$\Rightarrow a^{4}-26 a^{2}+144=0$
$\Rightarrow a^{4}-8 a^{2}-18 a^{2}+144=0$
$\Rightarrow a^{2}\left(a^{2}-8\right)-18\left(a^{2}-8\right)=0$
$\Rightarrow\left(a^{2}-8\right)\left(a^{2}-18\right)=0$
$\Rightarrow a^{2}-8=0$ or $a^{2}-18=0$
$\Rightarrow a^{2}=8$ or $a^{2}=18$
If $a^{2}=8$ then
$b^{2}=8-9=-1$

Gradeup Green Card

Since the square of a real number cannot be negative. So, this is not possible

If $a^{2}=18$ then
$b^{2}=18-9=9$
So, equation of ellipse if $\mathrm{a} 2=18$ and $\mathrm{b} 2=9$
$\frac{x^{2}}{18}+\frac{y^{2}}{9}=1$
49. Ans. D.

Total number of elementary events $=6^{3}$
Favorable number of events $=$ coefficient of x^{0} in $\left(x+x^{1}+x^{0}+x^{-2}+x^{2}+x^{3}\right)^{3}$
$=$ coefficient of x^{0} in $\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\mathrm{x}^{4}+\mathrm{x}^{5}}{\mathrm{x}^{2}}\right)^{3}$
$=$ coefficient of x^{6} in $\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{3}$
$=$ coefficient of x^{6} in $\left(\frac{1-x^{6}}{1-x}\right)^{3}$
$=$ coefficient of x^{6} in $\left(1-x^{6}\right)^{3}(1-x)^{-3}$
$=$ coefficient of x^{6} in $\left[1-{ }^{3} C_{1} x^{6}+\ldots ..\right][1-x]^{-3}$
$=$ coefficient of x^{6} in $[1-x]^{-3} \cdot{ }^{3} C_{1}$ coefficient of x^{0} in $[1-x]^{-3}$
$={ }^{6+3-1} \mathrm{C}_{3-1}-{ }^{3} \mathrm{C}_{1}$
$={ }^{8} C_{2}-{ }^{3} C_{1}=25$
Required probability $=25 / 216$
50. Ans. D.
$=$ Probability for rain $=\frac{25}{100}=\frac{1}{4}$
=Probability for getting one rainy day within a period of seven days

Gradeup Green Card

$$
=1-\left[1-\frac{1}{4}\right]^{7}=1-\left[\frac{3}{4}\right]^{7}
$$

Gradeup Green Card

Unlimited Access to 200+ Defence Mock Tests

