SOLUTIONS

1. Ans. (d)
$5^{17}+5^{18}+5^{19}+5^{20}$
$=5^{17}\left(1+5+5^{2}+5^{3}\right)$
$=5^{17}(156)$
156 is divisible by 13 , and not by 7, 9 or 11 . Hence the correct option is 13 .
2. Ans. (c)

Given equation: $\mathrm{a}+\mathrm{b}=2 \mathrm{c}$
Let the values of $a=0, b=1, c=1 / 2$ to satisfy the above equation
Now, putting the value of a, b, c in the equation given in question
$a /(a-c)+c /(b-c)$
$=0 /(0-1 / 2)+1 / 2 /(1-1 / 2)$
$=0+1 / 2 /(1 / 2)$
= 1
3. Ans. (b)
$X=y^{1 / a}, y=z^{1 / b}, z=x^{1 / c}$
Taking log in the above given equations;
$\log x=1 / a \log y, \log y=1 / b \log z, \log z=1 / c \log x$
Calculating the values of a, b and c
$a=\log y / \log x$
$b=\log z / \log y$
$c=\log x / \log z$
Now, $\mathrm{a} * \mathrm{~b} * \mathrm{c}=1$
4. Ans. (c)
$2 b=a+c$ and $y^{2}=x z$
Let the value of a. b and c to satisfy the equation
be $\mathrm{a}=\mathrm{b}=\mathrm{c}=1$
Also, let the values of x, y and z
$x=y=z=2$
$X^{b-c} y^{c-a} z^{a-b}$
$=2^{1-1} 2^{1-1} 2^{1-1}$
$=2^{0} 2^{0} 2^{0}$
$=1 *{ }^{*}{ }^{*}$
$=1$
5. Ans. (d)

Decimal expansion of an irrational number is nonterminating and non-repeating.
6. Ans. (b)

Let the roots be x and $1 / x$.
Use the property of quadratic equations
$\{x+y=-b / a, x y=c / a\}$;
$x^{*} 1 / x=r / p$
$1=r / p ; r=p$
7. Ans. (a)
$65 x-33 y=97=>$ equation 1
$33 x-65 y=1=>$ equation 2
We have 2 equations and 2 variables, solve them to evaluate the values of $x \& y$. Multiplying equation 1 by 33 \& equation 2 by 65 .
$(65 x-33 y=97) * 33$ i.e. $2145 x-1089 y=3201$ => equation 1
$(33 x-65 y=1) * 65$ i.e. $2145 x-4225 y=65=>$ equation 2
Subtracting equation 2 from equation 1 :

$$
\begin{aligned}
& (2145 x-1089 y)-(2145 x-4225 y)=3201-65 \\
& \Rightarrow 3136 y=3136 \\
& \Rightarrow y=1 \\
& \Rightarrow \text { Substitute value of } y \text { in any one equation to } \\
& \quad \text { evaluate the value of } x: \\
& \Rightarrow 33 x-65 * 1=1 \\
& \text { Or, } 33 x=66 \\
& \text { or } x=2 \\
& \Rightarrow \text { Thus, } x y=1 * 2=2
\end{aligned}
$$

8. Ans. (a)

From eq 1
$b / y+z / c=1$
$z / c=1-b / y$
$z / c=(y-b) / y$
from eq 2
$c / z=1-x / a$
$z / c=a / a-x$.
equating equations (i) \& (ii)
($\mathrm{y}-\mathrm{b}$)/y $=\mathrm{a} /(\mathrm{a}-\mathrm{x})$
Cross-multiplying
$(a y-a b-x y+x b)=a y$
$X b=a b+x y$
$(a b+x y) / x b=1$
9. Ans. (c)
$\left(a^{2}-1\right) / a=5$
$a-1 / a=5$
cube both the sides
$a^{3}-1 / a^{3}-3^{*} a^{*} 1 / a *(a-1 / a)=125$
$a^{3}-1 / a^{3}-3 * 5=125$ (using equation (i))
$a^{3}-1 / a^{3}=140$
or, $\left(a^{6}-1\right) / a^{3}=140$
10. Ans. (d)
$x+y+z=0$
From this,
$y+z=-x$
$z+x=-y$
$x+y=-z$
Putting these values on eq
$(y+z-x)^{3}+(z+x-y)^{3}+(x+y-z)^{3}$
$=(-x-x)^{3}+(-y-y)^{3}+(-z-z)^{3}$
$=(-2 x)^{3}+(-2 y)^{3}+(-2 z)^{3}$
$=-8\left(x^{3}+y^{3}+z^{3}\right)$ using identity for $(x+y+z)^{3}$
when $(x+y+z)=0\}$
$=-8 * 3 x y z$
$=-24 x y z$
11. Ans. (a)

If $(x+3)$ is a factor of $x^{3}+3 x^{2}+4 x+k$
So, equation will be completely divided by $(x+3)$
$x+3) x^{3}+3 x^{2}+4 x+k\left(x^{2}+4\right.$ $x^{3}+3 x^{2}$

$$
\begin{aligned}
& 4 x+k \\
& 4 x+12
\end{aligned} \quad \text { if } k=12 \text { so equation }
$$

completely divided by $x+3$
0
From this we find that $k=12$
12. Ans. (b)
$32^{2}=1024$
13. Ans. (b)
$3 x^{3}+4 x^{2}-7$
Putting $x=1$;
$3+4-7=0$
Hence the correct answer is 1 .
14. Ans. (a)

Let the numbers be x and y
$x^{*} y=$ LCM ${ }^{*}$ HCF
$x y=21 * 3003$
$x y=21 * 273 * 11$
According to the question both the numbers are greater than 21, hence the two numbers are:
$x y=231^{*}\left(21^{*} 11\right)$, i.e. $x y=231 * 273$
$x+y=(231+273)=504$
15. Ans. (c)
$a x^{2}+b x+c=0$; roots of this equation are a and β
Thus, $a+\beta=-b / a$ and $a \beta=c / a$
Now, $(a+1)(\beta+1)=a \beta+a+\beta+1$
Putting the values;
$=c / a-b / a+1$
$=(c-b+a) / a$
16. Ans. (d)
$3 x^{3}+k x^{2}+5 x-6$ divided by $(x+1)$
$x+1) 3 x^{3}+k x^{2}+5 x-6\left(3 x^{2}+(k-3) x+(8-k)\right.$
$\frac{3 x^{3}+3 x^{2}}{(k-3) x^{2}+5 x}$
$(k-3) x^{2}+(k-3) x$
(8-k)x-6
$(8-k) x+(8-k)$
If remainder is -7 so,
$-6-8-k=-7$
Thus, $\mathrm{K}=7$
17. Ans. (a)

Greater than min (p,q)
18. Ans. (a)
$\{(\sqrt{ } 5-\sqrt{ } 3) / \sqrt{ } 5+\sqrt{ } 3\}-\{(\sqrt{ } 5+\sqrt{ } 3) / \sqrt{ } 5-\sqrt{ } 3\}$
$=\left\{(\sqrt{ } 5-\sqrt{ } 3)^{2}-(\sqrt{ } 5+\sqrt{ } 3)^{2}\right\} / 5-3$
$=-4 \sqrt{ } 5^{*} \sqrt{ } 3 / 2$
$=-2 \sqrt{ } 15$
19. Ans. (c)
$1 /\left(1+x^{b-a}+x^{c-a}\right)+1 /\left(1+x^{a-b}+x^{c-b}\right)+1 /\left(1+x^{a-c}+x^{b-c}\right)$
Assume the value of $x=1$
$=1 / 3+1 / 3+1 / 3$
$=3 / 3$
$=1$
20. Ans. (a)

Let the numbers are x and x^{2}
$x^{2}+x=20$
$x^{2}+x-20=0$
Solving this quadratic equation;
$x=-5$ and 4
21. Ans. (b)

Old price x and new price $1.25 x$
$x * y=k$ (where y is the total consumption and ' k ' is the budget)
$1.25 x^{*} y^{\prime}=k$ (y^{\prime} is the new consumption)
Equating both the equations:
$y^{\prime}=100 / 125 y$
$y^{\prime}=4 / 5 y$
i.e. the new consumption of $4 / 5$ of the original consumption. If original consumption was 100 , new consumption $=4 / 5$ of 100 i.e. 80 . So, the
consumption must be reduced by 20%.
22. Ans. (b)

Total registered students $=2000$
Students who did not appear $=2000 / 25=80$
Total students who appeared $=2000-80=1920$
Total students who passed $=1920 * 11 / 20=1056$
23. Ans. (b)
$0.9999-0.9=.099$
24. Ans. (c)
$A: B=1: 2 \rightarrow 3: 6$
$B: C=3: 4 \rightarrow 6: 8$
$C: D=2: 3 \rightarrow 8: 12$
$D: E=3: 4 \rightarrow 12: 16$
$B: E=6: 16$
$B: E=3: 8$
25. Ans. (c)

10W * 12
$=8 * 5 \mathrm{M}$
M = 3W
Let total days required to complete the complete
work by 6 women and 3 men be ' y '.
$(6 W+3 M)$ y $=10 W * 12$
(10W*12 is equal to the total work)
$(6 W+9 W) y=10 W * 12$
$15 \mathrm{Wy}=10 \mathrm{~W} * 12$
$Y=8$ days
26. Ans. (c)

Let total work $=\mathrm{X}$
$200 \mathrm{M} * 150=\mathrm{X}$
After 50 days
$200 \mathrm{M} * 50=\mathrm{X} / 4$
Remaining work $=3 X / 4$
After 50 days, let ' y ' workers be added to complete the work on time.
$(200+y) M * 100=3 X / 4$
$(200+y) M * 100=3 * 200 M * 50$
$200+y=300$
$Y=100$ men
27. Ans. (c)

Speed $=60 \mathrm{~km} / \mathrm{hr}=60 * 5 / 18 \mathrm{~m} / \mathrm{sec}$
Time $=$ Distance $/$ Speed (distance is a length of train)
$30=\mathrm{L} / 60 * 5 / 18$
$\mathrm{L}=500 \mathrm{~m}$
28. Ans. (c)
$A+B+C=120$
According to the question
$B=A-20$
$C=A+20$
Also, $A+B+C=120$
Solving the above 3 equations;
$A+A-20+A+20=120$
$3 A=120$
$A=40$
Thus, $B=20$
And $C=60$
29. Ans. (a)
$M \propto 1 / N$
$M N=K$ (CONSTANT)
$15^{*}-4=-6 * A$
$6 A=60$
$A=10$
Similarly,
$-6 * 10=2 B$
$B=-30$
Similarly,
2*-30 $=$ C*60
$\mathrm{C}=-1$
30. Ans. (b)

Total gain by the person
$=\{5000 * 2 * 5.5 / 100\}-\{5000 * 2 * 5 / 100\}$
$=\{5000 * 2 / 100\} *\{5.5-5\}$
$=5000 * 2 * 5 / 1000$
$=$ Rs. 50
31. Ans. (c)

Total age of father and son $=25^{*} 2=50$
After 7 years,
Son's age $=\mathrm{s}+7=17$
Present age of son $=10$
Present age of father $=40$
After 10 years, Age of father $=50$ years $(40+10)$
32. Ans. (c)
M *D/W $=M^{\prime *} D^{\prime} / W^{\prime}$
5*5/5 = M'*50/100
$M^{\prime}=10$ tractors
33. (a)

Let the certain capital $=x$
$x * 125 / 100 * 125 / 100 * 125 / 100=10000$
$x * 5 / 4 * 5 / 4 * 5 / 4=10000$
$x=10000 * 4 * 4 * 4 / 125$
$x=5120$
34. (a)
0.459459459...
= 459/999
$=51 / 111$
$=17 / 37$
35. Ans. (c)

Let the annual income $=x$
As per the conditions given in the question,
$(x * 1 * 4 / 100)-(x * 1 * 3.75 / 100)=64$
$x / 100 *(4-3.75)=64$
$x=64 * 100 / .25$
x = Rs. 25600
36. Ans. (a)

If m's value lies between 0 and 1
Let the value of $m=1 / 2$
$\mathrm{m}^{2}=1 / 4$
$m^{-1}=2$
$\log 1 / 2=-3010$
now taking the value of $m=1 / 4 \backslash$
$m^{2}=1 / 16$
$\mathrm{m}^{-1}=4$
$\log 1 / 4=-6020$
so, option a is true
$\log \mathrm{m}<\mathrm{m}^{2}<\mathrm{m}<\mathrm{m}^{-1}$
37. Ans. (a)

Total sum = Rs. 39000
Let the share of wife $=x$
So, share of each daughter $=2 x$
Share of each son $=6 x$
As per question,
$5(6 x)+4(2 x)+x=39000$
$30 x+8 x+x=3900$
$39 x=39000$
X = Rs. 1000
38. Ans. (d)

Let the numbers be $=p, q$ and r
Now, $\mathrm{p} * \mathrm{q}=286=2 * 13 * 11$ (After factorization)
$q * r=770=11 * 7 * 5 * 2$
Since the numbers are co-prime, so,
$q=2 * 11=22$
$p=13$
$r=35$
Sum of the three numbers $=22+13+35=70$
39. Ans. (b)

Let the age of women $=10 x+y$
The age of husband $=10 y+x$
According to question
$(10 y+x)-(10 x+y)=1 / 11(10 x+y+10 y+x)$
$9 y-9 x=1 / 11(11 x+11 y)$
$9 y-9 x=x+y \ldots \ldots(a)$
$8 y=10 x$
$x=8 y / 10$
$x=4 / 5 y$
Difference of their ages
$9 y-9 x=4 y / 5+y$
$9 y-9 x=9 y / 5$
So, the difference of their ages is multiple of 9 .
Hence, option (b) is correct.
40. Ans. (a)

Let the length of train A be I_{1} and the length of train B be I_{2}. Let their respective speeds be $U_{a} \& U_{b}$
Now, according to the question,
$3\left\{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) /\left(\mathrm{U}_{\mathrm{a}}+\mathrm{U}_{\mathrm{b}}\right)\right\}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) / \mathrm{U}_{\mathrm{a}}-\mathrm{U}_{\mathrm{b}}$

On solving the above equation,
$2 U_{a}=4 U_{b}$
$U_{a} / U_{b}=2 / 1$
41. Ans. (c)

In all odd prime numbers, the unit digits are 1,3 , 5, 7, 9
So after multiplying these numbers, we get $=945$ Hence, the unit's digit is 5 .
42. Ans. (b)

Ratio of copper and tin in alloy $A=2: 3$
Ratio of copper and tin in alloy $B=3: 4$
20 kg taken from A :
Copper $=8 \mathrm{~kg}$ and $\mathrm{tin}=12 \mathrm{~kg}$
28 kg taken from B :
Copper $=12 \mathrm{~kg}$ and $\mathrm{tin}=16 \mathrm{~kg}$
This is mixed with some pure cooper $=x \mathrm{~kg}$
Ratio of copper and tin in alloy $C=6: 7$
Total copper in alloy $\mathrm{C} /$ total tin in alloy $\mathrm{C}=6 / 7$
$(8+12+x) /(12+16)=6 / 7$
$(20+x) / 28=6 / 7$
$x=4 \mathrm{~kg}$
43. Ans. (a)
$a x^{2}+b x+c$
When divided by x, dividend $=a x+b$ \& reminder $=c$
So, the value of $c=3$
When divided by ($x-1$), dividend $=a x+b+a \&$
reminder $=>c+a+b=6$
Thus, $a+b=3($ since $c=3)$
44. Ans. (c)

Let the integers be $x, x+1, x+2, x+3, x+4, x+5$,
$x+6, x+7, x+8$
Now, as per question,
$(x+x+1+x+2+x+3+x+4+x+5+x+6+x+7$
$+x+8) / 9=55$
$9 x+36=55^{*} 9$
$x=51$
Largest integer $=x+8=59$
45. Ans. (a)

Total age of 15 students $=19 * 15=285$
After 5 new students added, total age
$=20 * 18.5=370$
Sum of the ages of 5 new students
$=370-285=85$
Average age of the 5 new students $=(85 / 5)=17$
46. Ans. (b)

Speed in still water, $V_{b}=x$
Speed in flowing water, $\mathrm{V}_{\mathrm{s}}=\mathrm{y}$
Total time taken by the man to row to $\&$ fro $=z$
Thus, $z=d /(x+y)+d /(x-y)$ (where d is the
distance between the two places)
$z=d\{x-y+x+y\} / x^{2}-y^{2}$
$d=z\left(x^{2}-y^{2}\right) / 2 x$
47. Ans. (c)
$P=12$
$\mathrm{Q}=10$
$R=-6$

Taking S 1 or S 2
$\mathrm{P}+\mathrm{Q}-\mathrm{R}=12+10-6=16 \mathrm{lt} / \mathrm{min}$
5 hours $45 \mathrm{~min}=345 \mathrm{~min}$
Volume of tank $=16 * 345=5520$ liters
Now taking S1 and S3
$15 \mathrm{hrs} .20 \mathrm{~min}=920 \mathrm{~min}$
Volume of tank $=6 * 920=5520$ liters
Now taking S2, S3
Let the volume of tank v
$\mathrm{v}=[10+12-\mathrm{v} / 920] * 345$
$v=22 * 345-345 v / 920$
$v+69 v / 184=22 * 345$
$253 v / 184=22 * 345$
$\mathrm{V}=22 * 345 * 184 / 253$
$V=5520$ liters
Thus, any two of S1, S2 and S3 are sufficient.
48. Ans. (c)

Total distance $=2 \mathrm{~d}$
So according to the question
$2 d / 48=d / 60+d / y$
$1 / 24=1 / 60+1 / y$
$1 / 24=(y+60) / 60 y$
$5 y=2 y+120$
$3 y=120$
$y=40 \mathrm{~km}$ per hour
49. Ans. (a)

Let CP of the article $=$ Rs. 100
Then, SP $=100 * 132 / 100=132$
According to question,
CP is increased by 20\% and SP remains same
New CP $=100 * 120 / 100=120$
Profit $\%=(132-120) / 120 * 100=12 / 120 * 100$
= 10\%
50. Ans. (b)

Let D's share $=x$
$E=3 x / 2$
$B=x / 2$
$C=2 x$
$A=3 x$
Shares of $A+D+E=3 x+x+3 x / 2=11 x / 2$
Shares of $B+C=2 x+x / 2=5 x / 2$
Difference $=3 x=13500$
x= 4500
Shares of $B+C+E=4 x=4 * 4500=18000$
51. Ans. (c)
100% corresponds to 360°
16.1% corresponds to $360^{\circ} / 100^{*} 16.1=57.96^{\circ}=$ 58^{0}
52. Ans. (c)

Let the two numbers be a and b
$(a+b) / 2=10$
$a+b=20$
Also, $\sqrt{ } a b=8$
$a b=64$
$a=64 / b$

Solving the above 2 equations,
$\mathrm{a}=16$ and $\mathrm{b}=4$
53. Ans. (c)

Sum of 11 observation $=11 * 11=121$
Sum of first 6 observation $=10.5 * 6=63$
Sum of last 6 observation $=11.5 * 6=69$
Sum of first $6 \&$ last 6 observations $=63+69=$ 132
Thus, Sixth observation $=132-121=11$
54. Ans. (d)
$\operatorname{Sin}^{4} \theta-\cos ^{4} \theta$
$=\left(\sin ^{2} \theta-\cos ^{2} \theta\right) *\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=-\cos 2 \theta * 1$
$=1-2 \cos ^{2} \theta$
55. Ans. (b)
$\cot 1 ®^{\circledR} \cot 23^{\circ} \cot 45 ® \cot 67^{\circ} \cot 89^{\circ}$
$\cot 1^{0} \cot 89^{\circ}=1$
$\cot 23^{\circ} \cot 67^{\circ}=1$
$\cot 45^{\circ}=1$
Thus, $\cot 1 \circledR^{\circledR} \cot 23^{\circ} \cot 45 ® \cot 67^{\circ} \cot 89^{\circ}=1$
56. Ans. (b)

The hour hand completes 360° in (60*12) i.e. 720 minutes
Thus, it completes $1 / 2^{0}$ in a minute.
So, in 10 minutes it covers 5^{0}
57. Ans. (b)

Taking statement 1:
$\left(\operatorname{Sec}^{2} \theta-1\right) *\left(1-\operatorname{cosec}^{2} \theta\right)=1$
$\left(1+\tan ^{2} \theta-1\right) *\left(-\cot ^{2} \theta\right)=1$
$\tan ^{2} \theta *\left(-\cot ^{2} \theta\right)=1$
$-1=1$ is not possible, Hence, statement 1 is
wrong.
Taking statement 2,
$\sin \theta(1+\cos \theta)^{-1}+(1+\cos \theta)(\sin \theta)^{-1}=2 \operatorname{cosec} \theta$
$\sin \theta /(1+\cos \theta)+(1+\cos \theta) / \sin \theta$
$=\left(\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta\right) /(\sin \theta+\sin \theta \cos \theta)$
$=2(1+\cos \theta) / \sin \theta(1+\cos \theta)$
$=2 \operatorname{cosec} \theta$
So, statement 2 is true
58. Ans. (c)

Diagonal of the square $=>A C^{2}=2 I^{2}$ (where I is the side of the square)
$A C=\sqrt{ } 2 l$

AE (Base of the triangle formed by the vertex of the square with the tip of the tower) $=1 / 2 \mathrm{AC}=\sqrt{ } 2 \mathrm{l} / 2$
Also, angle DAE $=60^{\circ}$
In triangle $A D E, \tan 60=h /(\sqrt{ } 2 \mathrm{l} / 2)$
$\mathrm{h}=\sqrt{ } 2 / 2 * \sqrt{ } 3 * 1$
$h^{2}=3 / 2 l^{2}$
59. Ans. (b)

In the initial figure, $\operatorname{Tan} a=(H-h) / A B, \tan \beta=$ h/AB
From $2^{\text {nd }}$ figure
Tan $a=(h+x) / A B$
Equating both the values of $\tan a$
$(H-h) / A B=(h+x) / A B$
$x=H-2 h$
60. Ans. (a)
$\sec x \operatorname{cosec} x=2$
let the value of $x=45^{\circ}$
Putting this value in the above equation,
$\sqrt{ } 2 * \sqrt{ } 2=2$
$\operatorname{Tan}^{n} x+\operatorname{Cot}^{n} x$
$\operatorname{Tan}^{n} 45+\operatorname{Cot}^{n} 45$
$=1^{n}+1^{n}$
$=2$
61. Ans. (a)
$\operatorname{Cos} x+\operatorname{Cos}^{2} x=1$
$\operatorname{Sin}^{2} x+\operatorname{Cos}^{2} x=1$
From both equations
$\operatorname{Cos} x=\operatorname{Sin}^{2} x$
Putting this value in equation
$\operatorname{Cos} x+\operatorname{Cos}^{2} x=1$
$\operatorname{Sin}^{2} x+\operatorname{Sin}^{4} x=1$
62. Ans. (c)
$\operatorname{Sin} A+\operatorname{Cos} A=p$
Squaring both sides
$\operatorname{Sin}^{2} A+\operatorname{Cos}^{2} A+2 \sin A \cos A=p^{2}$
$1+2 \sin A \cos A=p^{2}$
$\sin A \cos A=\left(p^{2}-1\right) / 2$
$\operatorname{Sin} A+\operatorname{Cos} A=p$
Cubing both sides;
$(\operatorname{Sin} A+\operatorname{Cos} A)^{3}=\operatorname{Sin}^{3} A+\operatorname{Cos}^{3} A+3 \operatorname{Sin} A \operatorname{Cos} A$
$(\operatorname{Sin} A+\operatorname{Cos} A)$
$p^{3}=q+3\left(p^{2}-1\right) / 2 * p$
$p^{3}=q+3 p^{2} / 2-3 p / 2$
$2 p^{3}-3 p^{3}+3 p-2 q=0$
$p^{3}-3 p+2 q=0$
63. Ans.

If $x=\left(\sec ^{2} \theta-\tan \theta\right) /\left(\sec ^{2} \theta+\tan \theta\right)$
Let the values of $\theta=45$
So, $x=(2-1) /(2+1)=1 / 3$
Since this holds true only for option 4, hence, it's the correct answer.
($1^{\text {st }}$ in incorrect since it states that the value of x lies between $1 / 3 \& 3$, excluding $1 / 3$, hence it is not correct)
64. Ans. (a) or (c)

Let $A B=a$ and $B C=b$. Now, 2 cases may be possible in this question
Case I: a>b
Case II: $\mathrm{a}<\mathrm{b}$
In triangle $A B C$, Area $=1 / 2 A B * B C=1 / 2 * O B * A C$
$=>1 / 2 a b=1 / 2 x^{*} 4 x$
$=>a b=4 x^{2}=>2 a b=8 x^{2}$
Applying Pythagoras theorem in this triangle,
$a^{2}+b^{2}=(4 x)^{2}=16 x^{2}$
Now, $(a+b)^{2}=a^{2}+b^{2}+2 a b=>(a+b)^{2}=16 x^{2}$
$+4 x^{2}=26 x^{2}$
Thus, $(a+b)=2 \sqrt{ } 6 x$
Similarly, $(a-b)^{2}=a^{2}+b^{2}-2 a b$
Thus, $(a-b)=2 \sqrt{ } 2 \times$ and $-2 \sqrt{ } 2 \times$ (Considering
Case I \& II mentioned above)
Now,
Case I: $(a+b)+(a-b)=2 \sqrt{ } 6 x+2 \sqrt{ } 2 x \&(a+$
b) $-(a-b)=2 \sqrt{ } 6 x-2 \sqrt{ } 2 x$
$\Rightarrow a=(\sqrt{ } 6+\sqrt{ } 2) \times \& b=(\sqrt{ } 6-\sqrt{ } 2) \times$
Case II: $(a+b)+(a-b)=2 \sqrt{ } 6 x-2 \sqrt{ } 2 x \&(a+$
b) $-(a-b)=2 \sqrt{ } 6 x+2 \sqrt{ } 2 x$
$=>a=(\sqrt{ } 6-\sqrt{ } 2) \times \& b=(\sqrt{ } 6+\sqrt{ } 2) x$
Now, Tan $C=a / b$
So, Tan $c=(\sqrt{ } 6-\sqrt{ } 2) x /(\sqrt{ } 6-\sqrt{ } 2) \times($ Case $I)$
On rationalizing, Tan $C=2+\sqrt{ } 3$
For Case II, Tan C $=2-\sqrt{ } 3$
Thus, both options (a) \& (c) are correct.
65. Ans. (a)

Area of $\triangle A B C=1 / 2 * a * b$
Also Area of $\triangle A B C=1 / 2^{*} p * \sqrt{ }\left(a^{2}+b^{2}\right), A B=\sqrt{ }($ $a^{2}+b^{2)}$
$1 / 2 a b=1 / 2 * p * \sqrt{ }\left(a^{2}+b^{2}\right)$
$a^{2} b^{2}=p^{2}\left(a^{2}+b^{2}\right)$
66. Ans. (a)

Height of cone $=\sqrt{ }(169-25)=12$
Volume of cone $=1 / 3 n r^{3} * h$
$=1 / 3 * 22 / 7 * 125 * 12$
$=100$ п
67. Ans. (a)

Area of a circle $A=\pi r^{2}$
Area of greatest possible circle $A^{\prime}=\pi r^{2} / 4$
$A-2 A^{\prime}=\pi r^{2} / 2=A / 2$
68. Ans. (d)
$r=1$
| = 3
Ratio of total surface area to curved surface rea $=$ $\left(n r^{2}+\pi r l\right) / n r l=n r^{2} / n r l+1$
$=r / l+1$
$=1 / 3+1$
$=4 / 3$
Required ratio $=4: 3$
69. Ans. (b)

For small cone,
radius $=r$, height $=h$, slant height $=1$
For big cone,
radius $=\mathrm{R}$, height $=\mathrm{H}$, slant height $=\mathrm{L}$
The triangles formed in the smaller and bigger cones are similar, hence,
$r / R=h / H=l / L$--- eq (1)
Now, (Volume of small cone/ Volume of Frustum) = 64/61 = k(constant)
Thus, volume of big cone $=64 \mathrm{k}+61 \mathrm{k}=125 \mathrm{k}$
Volume of small come; $\mathrm{V}_{1} /$ Volume of big cone, $\mathrm{V}_{2}=$ (1/3 $\left.\quad r^{2} h\right) /\left(1 / 3 \pi R^{2} H\right)$
Also, $\mathrm{V}_{1} / \mathrm{V}_{2}=64 \mathrm{~m} / 125 \mathrm{~m}=64 / 125$
So, $r^{2} h / R^{2} H=64 / 125$
From eq (1), $r^{3} / R^{3}=64 / 125 ; ~ r / R=4 / 5$
Now, Ratio of curved surface area of small cone/
Ratio of curved surface area of big cone $=\pi r l / n R L$
$=(4 / 5)^{*}(4 / 5)($ from eq 1$)=16 / 25=k$ constant

So, Curved surface area of frustum $=25 \mathrm{k}-16 \mathrm{k}=9 \mathrm{k}$ Thus, Ratio of curved surface area of small cone/ Ratio of curved surface area of frustum $=16 \mathrm{k} / 9 \mathrm{k}=16$: 9
70. Ans. (c)

Total area of room $=100 \mathrm{~m}^{2}$
Area of triangular table $=\sqrt{ } 3$
Area of 4 book shelves $=4^{*} 4^{*} 1=16$
Area of rest of room $=100-(\sqrt{ } 3-16)=82.268$
Half of this area $=41.134$
Cost of carpeting $=41.134 * 100=$ Rs. 4113
71. Ans. (b)
$\mathrm{p}_{\mathrm{m}}=\left(\mathrm{r}_{\mathrm{m}}+1\right) / \mathrm{r}_{\mathrm{m}}=1+1 / \mathrm{r}_{\mathrm{m}}$
For $m=1, p_{1}=1+1 / r_{1}$
For $m=2, p_{1}=1+1 / r_{2}$
For $m=3, p_{1}=1+1 / r_{3}$
Also, $r_{3}>r_{2}>r_{1}$
Thus, $1 / r_{1}>1 / r_{2}>1 / r_{2}$
or, $1+1 / r_{1}>1+1 / r_{2}>1+1 / r_{2}$
or, $\mathrm{p}_{1}>\mathrm{p}_{2}>\mathrm{p}_{3}$
Thus, when m increases, value of p decreases.
Hence, Option b is correct
72. Ans. (c)

Edge of cube $=2$ a
So, height of cone $=2 a$
Radius of cone $=$ a (for maximum volume)
Volume of cone $=1 / 3 п a^{2} * 2 a=2 п a^{3} / 3$
73. Ans. (c)

Length of transverse common tangent $=\sqrt{ }$ \{center distance $\left.{ }^{2}-\left(r_{1}+r_{2}\right)^{2}\right\}$
$=\sqrt{ }(100-64)=\sqrt{ } 36=6 \mathrm{~cm}$
74. Ans. (b)

According to question
$4 n r^{2}=4 / 3 n r^{3}$
$r=3 \mathrm{~cm}$
75. Ans. (d)
$A B$ line segment is divided into two parts at point C,
let $A C=x$
$B C=2-x$
As per equation given in the statement
$\left(A C^{2}=A B * C B\right)$
$x^{2}=2 *(2-x)$
$x^{2}=4-2 x$
$x^{2}+2 x-4=0$
on solving this equation; $x=-1+\sqrt{ } 5$
76. Ans. (a)

The locus of the mid-points of the radii of length 16 cm of a circle is a concentric circle of radius 8 cm Hence Option 'a' is correct.
77. Ans. (d)
$n \mathrm{rl}=1.76$ * $10^{4} \mathrm{~cm}^{2}$
$22 / 7 * 70 * I=1.76 * 10^{4}$
I $=80 \mathrm{~cm}$
$I^{2}=6400$
Also, $\mathrm{I}^{2}=\mathrm{r}^{2}+h^{2}$
$h^{2}=6400-4900=1500$
$\mathrm{h}=10 \sqrt{ } 15$
78. Ans. (c)

Among the given statements, Sentence 2 (The centroid of a triangle always lies inside the triangle) and statement 3 (The orthocenter of a right-angled triangle lies on the triangle) are correct. Hence, Option (c) is correct.
79. Ans. (a)

The locus of a point equidistant from two intersecting lines is a straight line. Hence, option (a) is correct
80. Ans. (d)

There are three conditions of congruency. These are:
(a) Side-Angle-Side
(b) Angle-Side-Angle
(c) Side-Side-Side

Statement 1 says Angle-Angle-Angle property,
which is not true. Statements 2,3,4 are correct.
Hence the answer is option (d).
81. Ans. (c)

The given statement is; The angles of the polygon are all equal and each angle is 90°.
This means that it is either a rectangle or a square.
This makes statement 1 correct (i.e. the polygon has exactly 4 sides).
Sum of interior angles of a polygon having ' n ' sides is $(\mathrm{n}-2) * 180^{\circ}=(\mathrm{n}-2) * 2 * 90^{\circ}$
i.e. sum of interior angles of a polygon having n sides is $(2 n-4)$ right angles.
Hence only statement 1 is correct
82. Ans. (b)

Let side of square $=x$
Area $=x^{2}$
After increasing; $(X+8)^{2}=x^{2}+120$
On solving this equation, we get, $x=3.5 \mathrm{~cm}$
83. Ans. (d)

The highest power of 10 which would divide 25 ! Is greater than 5, hence, option (d) is correct.
84. Ans. (c)

Area of one room to be painted
$=2(b h+h l)=2((4 * 2.5)+(2.5 * 6))=50 \mathrm{~m}^{2}$
Area of 5 rooms $=50 * 5=250 \mathrm{~m}^{2}$
For painting $20 \mathrm{~m}^{2}=1$ can is used
So, for painting $250 \mathrm{~m}^{2}$, number of cans used:
$=250 / 20=12$, i.e., approximately 13 cans
85. Ans. (d)

Side of tiles $=50 \mathrm{~cm}$
Area of each tile $=50 * 50=2500 \mathrm{~cm}^{2}$
Area of rectangular pathway $=(1000 * 450) \mathrm{cm}^{2}$
Total tiles required for the pathway $=450000 / 2500$
$=180$ tiles.
Cost of 20 tiles $=$ Rs. 100
Cost of 18 - tiles $=100 * 180 / 20=$ Rs. 900.
86. Ans. (c)

For cube to be of maximum volume, Diagonal of cube $=$ Diameter of sphere
$\sqrt{ } \mathbf{3} \mathbf{a}=2 r$
$r=\sqrt{ } \mathbf{3 a} / 2$
According to question,
Volume of Cube / Volume of sphere $=a^{3} /\left(4 / 3 n r^{3}\right)$
Putting the value of r;
$=\mathbf{a}^{3} /\left(4 / 3 п(\sqrt{3} \mathbf{a} / 2)^{3}\right)$
On solving this ratio, we get $2 / \sqrt{ } 3 n$
87. Ans. (d)

According to question
$2 \pi r / h=3 / 1$
$h=2 / 3 n r$
Curved surface area of cone $=\pi r l=\pi r \sqrt{ }\left(h^{2}+r^{2}\right)$
$=\pi r \sqrt{ }\left(4 / 9 * \Pi^{2} r^{2}+r^{2}\right)$
$=\left\{\pi r^{2} \sqrt{ } \mathbf{4} \Pi^{2}+9\right\} / 3$
88. Ans. (c)
$2 \pi r=4 a$
$\pi r=2 a$
$22 / 7 * 98=2 a$
$a=154 \mathrm{~cm}$
89. Ans. (c)

As per question, $A B=a ; B C=b ; C A=c ; A D=p$;
$B E=q$ and $C F=r$
$A B+B D>A D$
$B C+C E>B E$
$\mathrm{CA}+\mathrm{AF}>\mathrm{CF}$
Adding the above 3 equations:
$A B+B C+C A+(B C / 2+A C / 2+A B / 2)>A D+B E+$ CF
$3 / 2(A B+B C+C A)>(A D+B E+C F)$
$3(a+b+c)>2(p+q+r)$
90. Ans. (b)

As per question, $A B=a ; B C=b ; C A=c ; A D=p ;$
$B E=q$ and $C F=r$. Let G be the mid-point/
intersection point of the 3 medians.
Now, in triangle AGC, using the triangle inequality property:
$2 / 3 r+2 / 3 p>c----$ eq (1)
In triangle BGC; $2 / 3 q+2 / 3 r>b$----- eq (2)
In triangle AGB, $2 / 3 p+2 / 3 q>a----$ eq (3)
Adding (1), (2) \& (3):
$2 / 3 r+2 / 3 p+2 / 3 q+2 / 3 r+2 / 3 p+2 / 3 q>a+b$
$+\mathrm{c}$
$4(p+q+r)>3(a+b+c)$
Hence option (b) is correct.
91. Ans. (b)

Side of square; $a=2 / \sqrt{ } \pi$
For largest circular disc; Side of square = Diameter of disc
i.e., $a=2 r$

Area of circle; $\pi r^{2}=\pi(a / 2)^{2}$
$=\pi^{*} 1 / n=1$
92. Ans. (b)
$D_{1} * D_{2}=50$
Area of square $=a^{2}=1 / 2 D_{1} * D_{2}$ (where ' a ' is the side of the square)
$a^{2}=1 / 2 * 50=25$
a $=5$ units
93. Ans. (b)

Surface area of Cylindrical box $=2 \pi r h+2 \pi r^{2}$
$=2 * \pi / 4 * d^{2}+\pi d h=352$ (where d is the diameter
$=2 r$)
$\mathrm{d}^{2}+2 \mathrm{~d} * 10=352 / \mathrm{n}^{*} 2$
$d^{2}+20 d=352 / 22 * 7 * 2=224$
$d^{2}+20 d-224=0$
$\mathrm{d}=8 \mathrm{~cm}$
94. Ans. (d)

Let Side of triangle $=a$ \& Side of Square $=b$
According to question,
$3 \mathrm{a}=4 \mathrm{~b}$ (Since their perimeters are same)
Diagonal of square $=b \sqrt{2}=6 \sqrt{ } 2$
Hence, $b=6$
So, $\mathrm{a}=8$
Area of triangle $=\sqrt{ } \mathbf{3} / 4 \mathbf{a}^{\mathbf{2}}$
$=\sqrt{ } 3 / 4 * 64$
$=16 \sqrt{ } 3$
95. Ans. (d)

In this case, Diagonal of square $=$ Diameter of circle
$\sqrt{ } \mathbf{2 a}=2 r$
Area of required region $=n r^{2}-a^{2}$
$=n(\sqrt{ } 2 a / 2)^{2}-a^{2}$
$=n a^{2} / 2-a^{2}$
$=(n-2) a^{2} / 2$
96. Ans. (b)

Let O be the center of the circle.
Now, angle OAX $=$ angle $O B X=90^{\circ}$
In polygon $A O B X$,
Angles $(A O B+O B X+B X A+X A O)=360^{\circ}$
Thus, angle $A O B=360-(90+90+50)=130^{\circ}$
angle $A C B=1 / 2$ angle $A O B=1 / 2$ of $130=65^{\circ}$
97. Ans. (c)

Both the given properties of lines are correct.
Hence, option (c) is correct.
98. Ans. (a)
$A D=D B=1 / 2$ (since $A B=1$, given in the question)
Area of shaded region $=$ Area of triangle $(A B C-$
ADE) \}
$=\left(\sqrt{ } 3 I^{2} / 4\right)-\left(\sqrt{ } 3 / 4 *(1 / 2)^{2}\right)$
$=3 \sqrt{ } 3 I^{2} / 16$
99. Ans. (b)
$\angle \mathrm{QPT}=\mathrm{a}, \angle \mathrm{OPT}=90^{\circ}$
$\angle \mathrm{OPQ}=\angle \mathrm{OQP}=90-\mathrm{a}$ (isosceles triangle)
$\angle \mathrm{POQ}=180-(90-\mathrm{a}+90-\mathrm{a})($ Sum of all the angles of triangle OPQ is 180°)

$$
=2 a
$$

Hence, option (b) is correct
100. Ans. (d)

$A B=C D=10 \mathrm{~cm}, P B=3 \mathrm{~cm} ; A P=(10-3)=7 \mathrm{~cm}$, $O C=13 \mathrm{~cm}$
Extending line MN, such that it is the diameter of the circle.
Since MN is the diameter; MN
$=2 O C=2 * 13=26 \mathrm{~cm}$
As per theorem of chords intersecting each other in a circle:
$A P * P B=M P * P N$
$=>7 * 3=(\mathrm{MN}-\mathrm{PN}) * \mathrm{PN}$
$=>21=(26-\mathrm{PN}) * \mathrm{PN}$
$=>\mathrm{PN}^{2}-26 \mathrm{PN}+21=0$
Applying formula,
$\mathrm{PN}=\left\{-(-26)(+/-) \sqrt{ }(-26)^{2}+(4 * 21)\right\} / 2$
(Discarding the negative root)
$\mathrm{PN}=13+2 \sqrt{ } 37$ or $13-2 \sqrt{ } 37$
Now, OP $=\mathrm{ON}-\mathrm{PN}=13-(13+2 \sqrt{ } 37)$ or $13-$
(13-2 37)
Since the first case will yield a negative value, so we will discard it.
Thus, $O P=2 \sqrt{ } 37$

