JEE Main Maths Short Notes

Quadratic Equations and Polynomial

Powered by :

Quadratic Equations and Polynomial

1. Quadratic Equation and Roots

A polynomial equation of second degree i.e an equation of the form $a x^{2}+b x+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers and $a \neq 0$, is known as a quadratic equation in x .

A quantity a is known as the root of the quadratic equation $a x^{2}+b x+c=0$ if $a \alpha^{2}$
$+b \alpha+c=0$
A quadratic equation cannot have more than 2 roots.

The quantity $b^{2}-4 a c$ is called the discriminant of the quadratic equation and denoted by D . The nature of D will determine the nature of the roots of the equation.

Case 1: $\mathrm{D}>0$ The equation $a x^{2}+b x+c=0$ will have two distinct real roots which are $-b \pm \sqrt{ } b 2-4 a c$

Case 2: $\mathrm{D}=0$ The equation $a x^{2}+b x+c=0$ has two equal real roots which are

- - b and - _-

Case 3: $\mathrm{D}<0$
The equation $a x^{2}+b x+c=0$ will have no real roots. It will have imaginary roots.

Case 4: D is a square of a rational number

The equation $a x^{2}+b x+c=0$ will have rational roots
Case 5: D is not a square of a rational number
The equation $a x^{2}+b x+c=0$ will have non - rational roots i.e., irrational roots and they exist in conjugate pairs

Few important points to keep in mind

- If $\mathrm{p}+\mathrm{iq}$ is a root, then another root will be $\mathrm{p}-\mathrm{iq}(\mathrm{i}=\sqrt{-1})$
- Imaginary roots always occur in pairs for any polynomial with real coefficients
- Relation between roots and coefficients for Quadratic Equation: In a quadratic equation $a x^{2}+b x+c=0$
b coefficient of x
The sum of the roots: $\alpha+\beta=-=-$
${ }_{2}$ The product of the roots $\mathbf{a}+\boldsymbol{\beta}==-$

a	$\begin{array}{c}\text { coefficient of } x \\ c\end{array}$
a	constant term

- The quadratic equation can be wrote using sum of roots and product of the roots as follows: $x^{2}-$ (sum of the roots) $x+$ (product of the roots) $=0$
- If the product of roots of a quadratic equation is negative, then the roots are of opposite sign
- If in a quadratic equation $a x^{2}+b x+c=0, \mathrm{a}=1$ and b, c are integers and roots are rational, then the roots are integers.

2. Symmetric Function of Roots

An expression in a, β is called a symmetric function of a and β if the function is not affected by interchanging a and β. A symmetric function of a and β can always be expressed as a function of $a+\beta$ and $a \beta$.

$$
\begin{array}{ll}
\text { - } & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\
\text { - } & \alpha-\beta= \pm \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}
\end{array}
$$

3. Common Roots

Let $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$ be two quadratic equations
Case 1: When one root α is common
$\frac{\alpha^{2}}{b_{1} c 2-c_{1} b_{2}} \frac{\alpha}{a_{2 c 1}-a_{1 c 2}} \frac{1}{\left(a_{1} b_{2}-a_{2} b_{1}\right)}=$

Case 2: When both the roots are common
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
4. Nature of roots of simultaneous quadratic equations Let
D_{1} and D_{2} be the discriminant of two quadratic equations. If

- $D_{1}+D_{2} \geq 0$, then at least one of the equations must have real roots
- $\quad D_{1}+D_{2}<0$, then at least one of the equations must have non-real roots
- $D_{1} D_{2}>0$, then either both the equations have real and distinct roots, or both the equations have non-real roots
- $D_{1} D_{2}<0$, then one of the equations has real and distinct roots while the other has non-real roots
- $D_{1} D_{2}=0$, the n one equation has equal roots. The other equation can have both real or nonreal roots

5. Sign of roots

Let the roots of $a x^{2}+b x+c=0$ be α and β

- If both roots are positive, then a and c must have same sign
- If both roots are negative, a, b, c have the same sign
- If one root is positive while the other is negative then, a and c must have different signs
- If roots are equal in magnitude but opposite in sign then $b=0$
- If the roots are reciprocal to each other then a is equal to c
- If $c=0$, then one of the roots must be 0
- If x is replaced by $1 / x$, then the new roots of the equation will be ${ }^{1}$ and ${ }^{1}$
- If \mathbf{x} is replaced by x^{2}, then the new roots of the quadratic equation will be $\alpha,-\alpha, \beta,-\beta$

6. Relation between roots and coefficients

Let $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}=0$, with $a_{0} \neq 0$ be a polynomial equation. Let the roots of the equation be $\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}$.

Sum of the roots taken one at a time: $\alpha_{1}+\alpha_{2}+\cdots \alpha_{n}={ }_{a 0}$
Sum of the roots taken two at a time: $\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\cdots+\alpha_{1} \alpha_{n}+\alpha_{2} \alpha_{3}+\cdots+\alpha_{n-1} \alpha_{n}={ }_{a 0}$

$$
a^{3}
$$

Sum of the roots taken three at a time: $\alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{2} \alpha_{4}+\cdots \alpha_{n-2} \alpha_{n-1} \alpha_{n}=-{ }_{a 0}$
\square
Product of the roots: $\alpha_{1} \alpha_{2} \alpha_{3} \ldots . \alpha_{n}=$ \qquad

7. Remainder Theorem, Factor Theorem, Divisibility Theorem

Remainder theorem states that if a polynomial is $f(x)$ is divided by $(x-a)$ where a is independent of x, then the remainder will be $f(a)$.

Factor theorem states that if $f(a)=0$, then ($x-a$) will be a factor of $f(x)$
Divisibility theorem states that if $f(a)=0$, then $f(x)$ will be divisible by ($x-a$)

Let $\mathrm{f}(\mathrm{x})$ be divided by ($\mathrm{x}-\mathrm{a}$)
$f(x)=(x-a) p(x)+R$ where R is the remainder
Put $x=a$
$f(a)=R$
This proves the remainder theorem.
If $f(a)=0$, then $R=0$ so $(x-a)$ is a factor of $f(x)$. This proves the factor theorem and divisibility theorem.

8. Inequalities Using Wavy Curve Method

$$
f^{(x)}=\frac{\left(\left(x-a_{1}\right)^{n_{1}}\left(x-a_{2}\right)^{n_{2}} \ldots . .\left(x-a_{k}\right)^{n_{k}}\right)}{\left(x-b_{1}\right)^{m_{1}}\left(x-b_{2}\right)^{m_{2}} \ldots .\left(x-b_{p}\right)^{m_{p}}}>0(\text { or }<0 \text { or } \leq 0 \text { or } \geq 0)
$$

Here $n_{1}, n_{2}, \ldots n_{k}, m_{1}, m_{2}, \ldots m_{p}$ are all natural numbers and $a_{1}, a_{2}, ., a_{k}, b_{1}, b_{2}, \ldots b_{p}$ are all real numbers and none of them are equal to each other.

- Function Zero: A point $x=a$ is called a function zero if $f(a)=0$
- Point of discontinuity: A point $x=b$, is called a point of discontinuity if $f(b)$ does not exist, that is the denominator becomes 0
- Single Point: Consider $\left(x-a_{k}\right)^{n k}$. If n_{k} is an odd integer then $x=a_{k}$ is called a single point. The function changes sign on either side of a_{k}
- Double Point: Consider $\left(x-a_{p}\right)^{n_{p}}$. If n_{p} is even integer then $x=a_{p}$ is called a double point. The function has the same sign on either side of a_{p}

Here $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ are function zeroes
$a_{1}, a_{2}, a_{4}, a_{5}, a_{6}$ are single points because the function changes sign
No. 1 site \& app
a_{3}, a_{7} are double points
9. Quadratic Expressions

Case 1: $a>0$

(i) $\quad \mathrm{D}<0$

(ii) $\mathrm{D}=0$

(iii) $D>0$

Case 2: $\mathbf{a}<0$
(i) $\mathrm{D}<0$

(ii)

(iii) $D>0$

10. Sign of quadratic expression

Let $f(x)=a x^{2}+b x+c$ be a quadratic expression, with a not equal to 0 . Let D be the discriminant of the corresponding quadratic equation and α and β be its roots.

- If $D<0$, the sign of $f(x)$ is same as that of a for all values of x - either positive or negative
- If $D=0$, the sign of $f(x)$ is same as that of a for all values of x
- If $\mathrm{D}>0$, the sign of $\mathrm{f}(\mathrm{x})$ is same as that of a for $x<\alpha$ and $x>\beta$. The sign of $\mathrm{f}(\mathrm{x})$ is opposite to that of a for $\alpha<x<\beta$

11. Location of roots - Root lies in ($0, \mathrm{p}$) if and only if $-b>0$ and $c>0$ when $p>0$

- Root lies in $(-p, 0)$ if and only if $-b<0$ and $c<0$ when $p>0$
- Both roots are greater than a given number k if the following three conditions are satisfied,

$$
D \geq 0,-{ }_{\overline{2 a}}^{b}>k \text { and } a . f(k)>0
$$

- Both roots are less than a given number k if the following three conditions are satisfied, $D \geq$

$$
0,-{ }_{2 a}^{\underline{h}}<k \text { and } a . f(k)>0
$$

- Both the roots will lie in the interval (k_{1}, k_{2}) if $D \geq 0, k_{1}<-{ }_{2}{ }^{b_{a}}<k_{2}$, and $a . f\left(k_{1}\right)>0$ and $a . f\left(k_{2}\right)>0$
- Exactly one root will lie in (k_{1}, k_{2}) if $f\left(k_{1}\right) . f\left(k_{2}\right)<0$
- A given number k will lie in between the roots if $a . f(k)<0$

12. Highest and Least Values of a quadratic expression If $a<0$, then the highest value of $f(x)=a x^{2}+b x+c$ is $-ـ^{D}$ and it is obtained at $x=-ـ^{b}$

If $\mathrm{a}>0$, then the least value of $\mathrm{f}(\mathrm{x})$ is $-\frac{\square}{4 a}$ and it is obtained at $x=-\frac{-}{2 a}$

Attempt the free Mock Test here

Revision Quiz | Quadratic Equations and

Polynomial

All the best!

Team Gradeup

Download Gradeup, the best IIT JEE Preparation App
Attempt subject wise questions in our new practice section and JEE Main Previous Year Papers

- Based on Latest Exam Pattern
- NTA based JEE Preparation
- Get your doubt resolved by mentors
- Practice questions and get detailed solutions
- Previous year paper detailed solution

