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Chapter 2 

Shallow Foundations 
 

2.1 Introduction 
 

The foundation of a structure can be defined as that part of the structure in direct contact 

with the ground and which safely transmits the load of the structure to the ground. 

 

 

Fig 2.1: Types of footing 
 

 



In the broadest sense foundation engineering is concerned with both the ability of the soil 

to support the load and the structural design of the sub-structural element which transmits the 

load onto the ground. Since the structural behavior of the substructure depends on the 

characteristics of the supporting soil as well as the possible structural influence of the 

superstructure the engineer should consider the structure, the foundation and the supporting soil 

as a whole rather than as independent elements. 

 
 

Fig2.2: Simple spread footing. 

 

To introduce the terms depth and breadth of foundation, a simple spread footing is 

illustrated in Fig 2.2. The depth of foundation, D, is the vertical distance between the ground 

surface and the base of the foundation. The width or breadth of foundation is the shortest 

dimension of the foundation in plan and is illustrated in Fig 2.2 for the three usual types: 

rectangular, square and circular. Foundations are broadly classified under two heads: shallow 

foundation and deep foundation. According to Terzaghi for a shallow foundation D≤B. However 

in practice, it is widely accepted that the above criterion may be modified as D≤2B for shallow 

foundations. The various types of shallow foundations provided in practice are: 

1. Spread footing, isolated footing or individual footing to support a single column. 

2. Combined footing to support two or more columns in a row. 

3. Continuous footing or strip footing to support a wall. 

4. Mat or raft foundation to support all the columns and walls together. 

A brief discussion of the above types of shallow foundations is given at the end of this chapter. 

The three types of deep foundations one can come across are: 



a. Pier foundation 

b. Pile foundation and  

c. Well foundation. 

These have been dealt with in the next chapter. 
 

Prior to the industrial revolution, little attention was given to the design of a foundation. 

Certain construction practices had been developed and a number of empirical rules had been 

formulated. The general approach was to employ a form of spread foundation unless soft 

material was encountered in which case, piles were driven. The procedure proved satisfactory in 

most instances as the buildings were light and flexible. Towards the end of the 19th century, 

higher and heavier structures were introduced. Foundation failures became more common and 

engineers began to seek more reliable procedures. 
 

Structural engineering made rapid progress about this time. The classical theories based 

on elastic, homogeneous materials were developed and applied to steel and concrete structures. 

Obviously these theories were not applicable to soil, the most variable and apparently inelastic 

material available to Civil Engineer. In these circumstances, foundation design remained an art 

where experience and empirical rules prevailed. It was a little wonder that inadequate 

foundations were the major cause of structural failure at that time. 
 

The first attempt to rationalize the design of the shallow foundations was the introduction 

of the “allowable soil pressure” concept. In this method, a table of allowable soil pressures was 

drawn up for various foundation soil types based upon experience. The method ignored many 

important factors affecting the behavior of a foundation; hence excessive settlements and failures 

frequently occurred. This method is still permitted by some Building Regulations and many texts 

provide tables of estimated allowable bearing pressure for various soil and rock types as 

illustrated in Table 2.1. However the bearing pressure values listed in such tables should be used 

only for preliminary design purposes or for minor structures where the cost of soil investigation 

is not justified. 

 

 

 

 



Table 2.1 Presumed allowable bearing pressure 

Group Types and conditions of rocks and soils 
Safe Bearing 

Pressure (kPa) 

Rocks 

 

 

 

Rocks (hard) without laminations and defects. For e.g. 

granite, trap & diorite 

3240 

Laminated Rocks. For e.g. Sand stone and Lime stone in 

sound condition 

1620 

Residual deposits of shattered and broken bed rocks and 

hard shale cemented material 

880 

Soft Rock 440 

Cohesionless 

Soils 

Gravel, sand and gravel, compact and offering resistance 
to penetration when excavated by tools 

440 

 Coarse sand, compact and dry 440 

 Medium sand, compact and dry 245 

 Fine sand, silt (dry lumps easily pulverized by fingers) 150 

 Loose gravel or sand gravel mixture, Loose coarse to 
medium sand, dry 

245 

 Fine sand, loose and dry 100 

Cohesive 

Soils 

Soft shale, hard or stiff clay in deep bed, dry 440 

Medium clay readily indented with a thumb nail 245 

Moist clay and sand clay mixture which can be indented 
with strong thumb pressure 

150 

Soft clay indented with moderate thumb pressure 100 

Very soft clay which can be penetrated several centimeters 
with the thumb 

50 



Black cotton soil or other shrinkable or expansive clay in 
dry condition (50 % saturation) 

130 - 160 

 

Note: 

1. Use γd for all cases without water. Use γsat for calculations with water. If simply 

density is mentioned use accordingly. 

2. Fill all the available data with proper units. 

3. Write down the required formula 

4. If the given soil is sand, c = 0 
 

Prior to about 1920 attempts to measure the safe bearing pressure consisted of loading to 

failure in the field a small plate about 0.3m square, as shown in the Fig 2.3(a), and then using the 

load-settlement curve obtained therefrom to infer the bearing pressure to be used in the design. 

While this procedure, if correctly performed and interpreted, can provide a satisfactory design, it 

has been clamied that the plate load test was the greatest single cause of failure in the history of 

foundations. The reasons for this observation are as follows. 

High stresses are produced in the soil below the plate only to a depth equal to about twice the 

width of the loaded area. Consequently the initial settlement of the plate will be governed by the 

compressilbity of the soil within the depth of about 0.6m. If the load is increased to failure the 

plate will usually fail by rotation along some surface such as a b c [Fig 2.3(b)] when shear 

strength of the soil around the slip surface has been fully mobilised. It follows therefore that 

compressibility is obtained only for the soil within a depth of about 0.6m and the shear strength 

inferred from this test relates only to the soil within a distance of about 0.3m below the plate. If 

the surface soil deposit is underlain by a weaker, more compressible soil stratum (or if the 

deposit becomes weaker with depth) than a single plate test performed near the ground surface 

will provide erroneous information for the design of a full size building as shown in  

Fig 2.3(b). This indeed was the cause of failure of the Transcona grain elevator which has been 

discussed by Peck & Bryant (1953). 
 

Since 1920 scientific study led by Terzaghi has revolutionized the design of foundations. 

Today, rational theories are available to predict the bearing capacity and settlement of shallow 



foundations with confidence. However, soils are not precisely amenable to mathematical solution 

and the engineer must temper theory with common sense and judgement based upon experience. 

 

The foundation designer must also consider the possible effects that construction 

techniques may have on the conditions assumed in design.  

 

Fig 2.3: Effect of Size of Loaded Area 

 

For instance, it may be necessary to consider such factors as the following: 

a) Occurrence during excavation: bottom heave; wetting, swelling and softening of 

an expansive clay or rock; piping in sands and silts; disturbance of silts and 

sensitive clays. 

b) Adjacent construction activities: ground water lowering; excavation; blasting. 

c) Other effects during or following construction: scour and erosion; frost action; 

flooding.  

In addition it is the responsibility of the foundation designer to ensure that the foundation 

design allows for any vertical and horizontal extensions of the structure, that the client may be 

contemplating. 

2.1.1 Requirements of a Good Foundation 
 

Basically a satisfactory foundation must satisfy three criteria: 

1) It must be sufficiently deep to be free from seasonal climatic effects such as frost 

damage including possible thawing in permafrost areas, damage from adjacent 



construction or possible scour from water flow. The foundation must also be located 

below any topsoil, other organic material, or any unconsolidated soil such as filled in 

areas, abandoned garbage dumps, etc. 

2) It must be safe from breaking into the ground (bearing capacity failure) and, 

3) The settlement of the structure must be kept within tolerable limits to minimize the 

angular distortion of the parts of the structure, to minimize the possibility of excessive 

tilting, particularly of buildings with a high aspect ratio and to prevent damage to 

adjacent buildings or attached services, etc. 

The first condition varies of course with each individual case but generally in cold 

regions a minimum foundation depth of about 1.0m to 1.5m is used to place exterior footings 

below the frost line. In the hot regions, where frost is not a problem, minimum depth of 

foundation is governed by the depth of erosion due to surface water runoff to prevent possible 

loss of support. This in practice is about 1 m. The last two requirements are studied in 

subsequent sections. 
 

2.1.2 Basic Definitions: 
 

1. Gross pressure intensity (𝑞) is the intensity of pressure at the base of foundation due to 

load from super structure, self weight of foundation and overburden, if any. 

2. Net pressure intensity (𝑞௡) is gross pressure intensity minus the over burden pressure at 

the level of base of foundation prior to excavation. 𝑞௡ = 𝑞 − 𝛾𝐷 

3. Ultimate bearing capacity (𝑞௙) is the minimum gross pressure intensity at which the soil 

at the base of foundation fails by shear. 

4.  Net ultimate bearing capacity (𝑞௡௙) is the minimum net pressure intensity at which the 

soil at the base of foundation fails by shear. 𝑞௡௙ = 𝑞௙ − 𝛾𝐷 

5. Net safe bearing capacity (𝑞௡௦) is the maximum net pressure intensity to which the soil at 

the base of foundation can be subjected without risk of shear failure.  𝑞௡௦ = 𝑞௡௙𝐹  

 where F= factor of safety against shear failure. 



6. Safe bearing capacity (𝑞௦) is the maximum gross preasure intensity to which the soil at 

the base of foundation can be subjected without risk of shear failure. 

    𝑞௦ = ௤೑ி  

         or more appropriately, 𝑞௦ = 𝑞௡௦ + 𝛾𝐷 

                             i.e. 𝑞௦ = ௤೙೑ி + 𝛾𝐷 

 

7. Allowable bearing pressure (𝑞௔) is the maximum gross pressure intensity to which the 

soil at the base of foundation can be subjected without risk of shear failure and excessive 

settlement detrimental to the structure. 𝑞௔ = 𝑞௡௔ + 𝛾𝐷 

where 𝑞௡௔ = net allowable bearing pressure. 

The term bearing capacity qualitatively refers to the supporting power of a soil or rock.  

But to define it or quantify it one should pay attention to the prefixes introduced earlier. 
 

2.1.3 Design Loading and General Philosophy  
 

Every foundation element must be able to support with an adequate margin of safety the 

maximum loading to which it may be subjected even if this loading may act only briefly over the 

lifetime of the structure. That is to say an overload or a misjudgment of the soil properties should 

result only in an increase of settlement and not in the complete failure of the sub-soil. 
 

The design live loads of buildings is specified according to the type of occupancy by 

building codes such as Bureau of Indian Standards. The structural designer must compute the 

contribution of dead and live loads to be supported by each column on the basis of these 

specifications and the structural action of the superstructure. Allowances must also be made for 

variations in column loading due to all possible combinations of dead loads, live loads, wind, 

earthquake, thermal expansion, etc. Reduction factors are usually specified according to the 

probability of the maximum effect of all of these occurring simultaneously. Each footing must be 

able to support safely the maximum load calculated on this basis. However, depending upon the 

type of foundation soil these maximum column loads may not always be the most appropriate for 

design of footing with respect to settlement. The reasons for this are as follows. 



1) The settlement of footings on coarse grained cohesionless soils, such as sands and 

gravels, occurs most rapidly. Consequently, much of the settlement due to dead loads 

will have occurred by the time the structure is completed. The settlement due to live 

loads will also occur as soon as the live load is in place even if the live load exists for 

a relatively short duration of time. 

2) In contrast to sands, the consolidation settlement of structures founded on saturated 

clays occurs very slowly and is essentially unaffected by short duration applications 

of live load (provided of course a bearing capacity failure is not approached). 

Consequently the long-term settlement of structures on saturated clay should be 

computed using dead loads plus the best possible estimate of the long-term average 

live load. The immediate settlement may occur when clays are first loaded but usually 

such settlement is not significant. 

The philosophy used in the design of foundations is to consider bearing capacity and 

settlement separately. A factor of safety of at least two is required against a bearing capacity 

failure even if the maximum loading can be computed accurately and the soil properties have 

been reliably determined. In practice a FS=2 is usually used for foundations on cohesionless soils 

and a FS=3 is required for foundations on cohesive soils. 
 

On the other hand, no load factor or margin of safety is used when estimating settlements; 

rather, the anticipated settlements are calculated from the actual design loading and the 

foundation is proportioned to keep these calculated settlements within tolerable limits. Footing 

sizes are usually selected to try and achieve equal settlements to minimize the differential 

settlements. 
 

2.2 Ultimate Bearing Capacity of Axially Loaded Continuous Footing 
 

When a load Q is applied to a soil in gradually increasing amounts by a rigid footing, as 

shown in Fig 2.4(a), the footing settles and a pressure-settlement curve similar to that shown in 

Fig 2.4(b) can be obtained. Both the shape of the curve and the ultimate maximum value (Qult) of 

the load vary, in general, with the strength and compressibility of the soil and the size and shape 

of the footing. The general nature of the soil response to loading will be explained in the 

following discussion for the somewhat simplified case of a continuous rigid footing placed on 

the surface of a uniform deposit of saturated clay. 



Generally, for small load increments, the response of the clay will be linear and the 

settlement of the footing could be computed using equation  𝑆 = 𝜇଴𝜇ଵ𝑞 𝐵𝐸 

…….Eq 2.1 

As the load on the footing is increased the ultimate strength of the clay is reached locally 

at the edges of the footing and the clay yields plastically. The progression of these zones of 

yielding with increasing load is also shown in Fig 2.4(a). It can be seen that first yield occurs at a 

load approximately equal to 27% of the ultimate maximum. 

 

Fig 2.4: Typical Footing Response to Load  

 

Ultimately the footing is surrounded by soil whose maximum strength has been reached 

and it is possible for the footing to fail either by excessive vertical displacement or by rotation if 

rotation of the footing is not prevented by the superstructure. 

We now require to be able to compute the ultimate bearing pressure which may be 

applied to any soil deposit. A rigorous analysis such as that described above is quite difficult 

because, in general, stress-strain relationships for soils are not reliably known and in any event 

some form of computer aided analysis is required. It is possible, however, to obtain reasonably 



accurate approximate solutions by studying possible failure mechanisms in much the same 

manner as is used in structural analysis to obtain statically admissible (lower-bound) and 

kinematically admissible (upper-bound) solutions for the collapse load of structural frames. 
 

2.2.1 Determination of Ultimate Bearing Capacity 
 

The ultimate bearing capacity of a foundation is determined by the methods listed below: 

1. By the use of theoretical analyses, 

such as Terzaghi’s analysis, Skempton analysis, Meyerhof analysis, etc. 

2. By the use of plate load test results 

3. By the use of penetration test results 

4. By the use of building codes 
 

Attempts to obtain equations for evaluating ultimate beating capacity of foundations 

dates back to the middle of 19th century, with Rankine’s analysis and Pauker’s analysis being the 

earliest. Both the analyses are based on classical earth pressure theory. In the beginning of 20th 

century Bell (1915) proposed an equation for ultimate bearingcapacity of footing, again based on 

classical earth pressure theory. Prandtl (1921) and Fellenius (1939) presented their analysis 

based on theory of plastic equilibrium. The equations obtained from the above cited analyses are 

not used in practice because of serious limitations. 
 

Significant contributions to the subject of bearing capacity were later made by Terzaghi 

(1943), Meyerhof (1951), Skempton (1951), Brinch Hansen (1961) and Balla (1962). In the 

following discussion Terzaghi’s analysis and those following it as indicated in the above list are 

reviewed. It is indeed of interest to go through the derivations which will help in fully 

appreciating the limitations of each analysis. For this purpose the student is advised to go 

through Appendix Ι. 
 

2.2.1.1 Prandtl’s Analysis 
 

Prandtl’s analysis is based on a study of plastic failure in metals when punched by hard 

metal punchers (Prandtl, 1920); Prandtl (1921) adapted the above study to soil loaded to shear 

failure under a relatively rigid foundation. Prandtl’s equation for ultimate bearing capacity is  𝑞௙ = c cos Φ (𝑁஍ . 𝑒గ௧௔௡஍ −  1)           . . .Eq 2.2(i) 



where𝑁஍ = 𝑡𝑎𝑛ଶ ቀ45଴ + ஍ଶ ቁ = ଵା ୱ୧୬஍ଵି ୱ୧୬஍ 

It is applicable for 𝑐 − Φ  soil. But for a cohesionless soil for which𝑐 = 0, Eq 2.2(i) gives 𝑞௙ = 0, which is ridiculous. This anamoly which is due to the assumption that the soil is weight 

less was removed by Taylor (1948). Prandtl’s equation with Taylor’s correction is 𝑞௙ = ቀ𝑐 cot Φ + ଵଶ 𝛾𝐵ඥ𝑁஍ቁ (𝑁஍ . 𝑒గ௧௔௡஍ −  1)     . . . . Eq 2.2(ii)  

Taylor also attempted to include the effect of overburden pressure in the case of a footing 

founded at depth D below the ground surface, resulting in the following equation. 𝑞௙ = ቀ𝑐 cot Φ + ଵଶ 𝛾𝐵ඥ𝑁஍ቁ (𝑁஍ . 𝑒గ௧௔௡஍ −  1) + + 𝛾𝑁஍ . 𝑒గ௧௔௡஍   . . . .Eq 2.2(iii) 

 

Assumptions made in Prandtl’s Analysis 
 

The following assumptions were made in Prandtl’s analysis. 

1) The soil is homogeneous and isotropic. 

2) The soil mass is weight less. 

3) The shear strength of soil can be expressed by Mohr-coulomb equation. 

4)  Prandtl assumed the failure zones to be formed as shown in Fig 2.5. 

Fig2.5: Failure Zones Assumed in Prandtl’s Analysis 

 

Zone Ι is bound by two planes inclined at ቀ45଴ + ஍ଶ ቁ to the horizontal and acts as a rigid 

body.Zone ΙΙ is bound by two planes inclined at ቀ45଴ + ஍ଶ ቁ and ቀ45଴ − ஍ଶ ቁ to the 



horizontal. The base of this zone is a logarithmic spiral in section. All radial sectors in 

this zone are failure planes.Zone ΙΙΙ is bound by two planes inclined at ቀ45଴ − ஍ଶ ቁto horizontal and also acts as a rigid body. 

5) The problem is essentially two dimensional, i.e., the equation is derived for a long strip 

footing. 

6) The base of the footing is smooth. 
 

The Limitations of Prandtl’s Analysis are 
 

1) In the original Prandtl’s equation, the ultimate bearing capacity reduces to zero for 

cohesionless soil. 

2) The original Prandtl’s equation is applicable only for a footing resting on surface. 

Attempts have been made by Taylor to overcome the anomalies arising due to 

assumptions (1) and (2) to some extent. 

3) In the case of a footing resting on purely cohesive soil, Prandtl’s equation leads to an 

indeterminate quantity. Only by applying L’ Hospital’s rule the limiting value Φ → 0 is 

obtained as 𝑞௨ =5.148. 

4) In the original Prandtl’s equation, the size of the footing is not considered. 
 

2.2.1.2 Terzaghi’s Analysis 
 

Terzaghi derived equation for ultimate bearing capacity of strip footing as: 𝑞௙ = 𝑐𝑁௖ + 𝛾𝐷𝑁௤ + 0.5𝛾𝐵𝑁ఊ        . . . Eq2.3(i) 

where, c = unit cohesion of soil 𝛾 = unit weight of soil 

  D = depth of foundation 

  B = width of foundation 𝑁௖,𝑁௤, 𝑁ఊ are Terzaghi’s bearing capacity factors for strip footing. These factors are 

dimensionless and depend only on angle of shearing resistance Φ of soil. It is to be noted that 

values of 𝛾 in the second and third terms of Eq 2.3(i) depend on position of water table and will 

be discussed in a later section. 
 



Assumptions made in Terzaghi’s Analysis 
 

Terzaghi while deriving equation for ultimate bearing capacity of strip footing made the 

following assumptions. 

1) The soil mass is homogeneous and isotropic. 

2) The shear strength of soil can be represented by Coulomb’s equation. 

3) The problem is two dimensional. 

4) The footing has rough base. 

5) The ground surface is horizontal. 

6) The loading is vertical and symmetrical. 

7) Terzaghi assumed the failure zones to be formed as shown in Fig 2.6. 

 

Fig2.6: Failure zones according to Terzaghi. 

Zone Ι is elastic zone. When footing moves downward during failure, this zone moves 

downward along with footing. It behaves as though it is a part of the footing. Zone ΙΙ is radial 

shear zone bound by two planes inclined at Φ and ቀ45଴ − ஍ଶ ቁ to the horizontal, and the base 

being a logarithmic spiral in section. One set of planes in this zone radiate from a corner of the 

footing. Zone ΙΙΙ is linear shear zone or Rankine passive zone with failure planes inclined at ቀ45଴ − ஍ଶ ቁto the horizontal. 

8) Failures zones are assumed to be formed fully. 

9) The principle of superposition is applicable. 

10) The failure zones do not extend above the base level of the footing, the effect of soil 

surrounding the footing above its base level is considered equivalent to a surcharge  σ = 𝛾D. 
 

 

σv
' qf

Ground surface



Limitations in Terzaghi’s analysis 
 

1) Terzaghi’s analysis assumes the plastic zones develop fully before failure occurs. This is true 

only in the case of dense cohesionless soils and stiff cohesive soils. 

2) The value of Φ is assumed to remain constant. But Φ can change as soil gets compressed. 

3) The failure zones are assumed not to extend above the base level of footing. Thus the 

shearing resistance of soil surrounding it above its base level is neglected. The error due to 

this assumption increases as the depth of footing is increased. 

4) The load is assumed to be vertical and acting concentrically with uniform pressure 

distribution at the base.  
 

Terzaghi's Bearing Capacity Factors 
 

Terzaghi's bearing capacity factors for strip footing assuming general shear failure have 

been obtained as:  𝑁௖ = (𝑁௤ − 1) cot Φ 𝑁௤ = aଶ2𝑐𝑜𝑠ଶ ቀ45଴ +  Φ2 ቁ 

𝑁ఊ = 12 ൬ 𝐾௣ఊ𝑐𝑜𝑠Φଶ − 1൰ tan Φ 

with   a = Expቂቀଷగସ − ஍ଶ ቁ tan Φ  ቃ 
To compute 𝑁ఊ the value of earth pressure coefficient 𝐾௣ఊ is required but as to how 𝐾௣ఊ 

can be obtained is a point which was not made clear by Terzaghi. However, Terzaghi provided 

values of 𝑁ఊ along with 𝑁௖, 𝑁௤ without the need for specific values of 𝐾௣ఊ .The bearing capacity 

factors can be obtained from chart in Fig 2.7(a). 



 

Fig 2.7(a): Terzaghi’s bearing capacity factors 

 



 

Fig 2.7(b): Terzaghi’s bearing capacity factors for transitional state 

 Terzaghi suggested that in the case of local shear failure reduced shear strength parameters Cm 

and Φm given by the following equations, be used instead of c and Φ 

  𝐶௠ = ଶଷc Φ௠ = tanିଵ ൬ 23 tan Φ)൰ 

The bearing capacity factors for local shear failure condition are usually denoted by 𝑁௖ ' 

,𝑁௤ ' and 𝑁ఊ '. They are obtained corresponding to Φm using the same chart provided (Fig 2.7) for 
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 In the case of purely cohesive soil, local shear failure may be expected when unconfined 

compressive strength, 𝑞௨ ≤100kN/m2 
  

2.2.1.2a Effect of Shape on Ultimate Bearing Capacity of Footing 
 

Terzaghi derived the equation for ultimate bearing capacity of strip footing in which the 

case the problem is essentially two-dimensional. But in the case of square or circular footing the 

problem becomes three-dimensional and more complicated from mathematical point of view. In 

the absence of rigorous theoretical analysis, Terzaghi suggested that the following equations may 

be used 

 For square footing 𝑞௙ = 1.3𝑐𝑁௖ + 𝑞௢𝑁௤ + 0.4𝛾𝐵𝑁ఊ 

For circular footing 

 𝑞௙ = 1.3𝑐𝑁௖ + 𝑞௢𝑁௤ + 0.3𝛾𝐵𝑁ఊ 

For quite some time the equation obtained for strip footing was used in the case of rectangular 

footing. Later rectangular footing was distinguished from strip footing as one for which L≤5B 

and the following equation was suggested. 

For rectangular footing  𝑞௙ = ቀ1 + 0.3 ஻௅ቁC𝑁௖ + 𝑞௢𝑁௤ + ቀ1 − 0.2 ஻௅ቁ 0.5𝛾𝐵𝑁ఊ 

In all the three equations qo denotes the effective overburden pressure at the base level of 

foundation. 
  

2.2.1.2b Effect of Size on Ultimate Bearing Capacity of Footing 
  

Case (1) Footing on cohesive soil (c−Φ soil) 𝑞௙ = 𝑐𝑁௖ + 𝛾𝐷𝑁௤ + 0.5𝛾𝐵𝑁ఊ                                         . . .Eq 2.4a 

From equation (2.4a) it is clear that in this case the ultimate bearing capacity depends on size of 

footing. It increases as the width of the footing is increased keeping depth constant. 

Case (2) Footing on cohesionless soil (c=0) 

When c=0, equation (2.4a) reduces to the following form 𝑞௙ = 𝛾𝐷𝑁௤ + 0.5𝛾𝐵𝑁ఊ                                        . . . Eq 2.4b 

  We notice that in this case also the ultimate bearing capacity depends on size of footing 

and increases as the width is increased keeping depth constant. 



 For Φ=0, Terzaghi's bearing capacity factors are 𝑁௖ = 5.7 , 𝑁௤ = 1 and 𝑁ఊ = 0 

Equation (2.4a) will then reduce to the following form 𝑞௙ = 5.7𝑐 + 𝛾𝐷                                          . . . Eq 2.4c 

From equation (2.4c) it is clear that for footing on purely cohesive soil, the ultimate bearing 

capacity is independent of size of footing. 
 

2.2.1.2c Effect of Water Table on Ultimate Bearing Capacity of Footing 
 

Method 1: Reduction factor method  

 

The submerged density of a soil is nearly half of its saturated density. Based on this fact 

water-table reduction factors have been proposed to consider the effect of rise in water table. 

 

 

Fig 2.9: Fluctuation of water table. 

When the water table lies at a depth, equal to or greater than width B of foundation, below the 

base of foundation, it has no effect on the ultimate bearing capacity. When the water table rises 

above level X-X marked in Fig 2.9 the effect of rise in water table is to reduce the ultimate 

bearing capacity. Consider, for example, Terzaghi's equation for ultimate bearing capacity of 

strip footing 𝑞௙ = 𝑐𝑁௖ + 𝛾𝐷𝑁௤ + 0.5𝛾𝐵𝑁ఊ                                        ….Eq 2.5a 
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To take into account the effect of rise in water table, the second and third terms of 

equation (2.5a) are to be multiplied by factors 𝑅௪భ and 𝑅௪మ respectively.  𝑅௪భ  and 𝑅௪మ  are known as water table reduction factors and are expressed as 𝑅௪భ =0.5ቀ1 + ௓ೢభ஽ ቁ 𝑅௪మ =0.5ቀ1 + ௓ೢమ஻ ቁ 

  

where 𝑍௪భ is the depth of water table measured below ground surface and 𝑍௪మ the depth of water 

table measured below base of footing. The limiting values of 𝑍௪భ and 𝑍௪మare as indicated below 

 𝑍௪భ=0 when water table is at or above ground level 𝑍௪భ=D when water table is at or below base level of footing 𝑍௪మ=0 when water table is at or above base level of footing 𝑍௪మ=0 when water table is at depth equal to or greater than width B, below base of footing. 

 Both 𝑅௪భ and 𝑅௪మ can have 0.5 as minimum value and 1 as maximum value ,that is 

 0.5≤𝑅௪భ≤1 

0.5≤𝑅௪మ≤1  

 Equation (2.5a) can then be written as  𝑞௙ = 𝑐𝑁௖ + 𝛾𝐷𝑁௤𝑅௪భ + 0.5𝛾𝐵𝑁ఊ𝑅௪మ                                     . . . Eq 2.5b 

 

The water table effect on the bearing capacity can also be evaluated without using the water table 

reduction factors. The other approach is based on the effective unit weight and is known as 

effective unit weight method.  

 

Method 2: Equivalent effective unit weight method 

The bearing capacity equation of the strip footing can be expressed as, 

1 20.5f c e q eq cN DN BN                                                                                        …….Eq 2.5c 

where  1e = weighted effective unit weight of soil lying above the base level of the foundation, 

2e = weighted effective unit weight of soil lying within the depth B below the base level 

of the foundation, 

�m= moist or saturated unit weight of soil lying above WT (case I or case 2) 



�sat= saturated unit weight of soil below the WT (case 1 or case 2) 

�b= submerged unit weight of soil = γsat-γw 

Case I: An equation for 1e may be written as, 

1
1 ( )w

e b m b
f

D

D
                    Eq. 2.5d 
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               Eq. 2.5e 

 

 

 

 

Fig. 2.10. Effect of WT on bearing capacity: (a) Water table above base level of foundation, 

(b) Water table below base level of foundation 



2.2.1.2d Effect of Foundation Depth on Bearing Capacity 
  

Some researchers have studied the additional contribution to bearing capacity provided 

by the shear strength of the surcharge soil and have expressed in this contribution in the form of 

depth factors to be included in the bearing capacity equation. 𝑞௨௟௧ = 𝑐𝑁௖𝑠௖𝑑௖ + 𝛾𝐷௙𝑁௤𝑠௤𝑑௤ + 0.5𝛾𝐵𝑁ఊ𝑠௥𝑑௥             ……. Eq 2.6 

 Recommendations for such depth factors are given in Hansen (1974), Bowles (1982) and 

other texts. It is sometimes convenient to include the depth effect for special cases but for most 

design situations it is better to be conservative and ignore the depth factor. 

2.2.1.3 Meyerhof’s Analysis 
   

Meyerhof (1951, 1963 ) proposed an equation for ultimate bearing capacity of strip 

footing which is similar in form to that of Terzaghi but includes shape factors, depth factors and 

inclination factors. Meyerhof's equation is 

 𝑞௙ = 𝑐𝑁௖𝑠௖𝑑௖𝑖௖ + 𝑞௢𝑁௤𝑠௤𝑑௤𝑖௤ + 0.5 𝛾𝐵𝑁ఊ𝑠ఊ𝑑ఊ𝑖ఊ               . . . Eq 2.7  

Meyerhof's bearing capacity factors are expressed as 𝑁௤ = 𝑒గ௧௔௡஍𝑡𝑎𝑛ଶ ൬45଴ +  Φ2 ൰ 

  𝑁௖ =(𝑁௤ −1) cotΦ 

  𝑁ఊ =(𝑁௤ −1) tan(1.4Φ ) 

The shape factors are given by 

    𝑠௖ = 1 + 0.2𝐾௣ ஻௅  for any Φ 

    𝑠௤=𝑠ఊ=1.0  for Φ =0଴ 

    𝑠௤=𝑠ఊ=1+0.1𝐾௣ ஻௅  for Φ  ≥ 10଴ 

    𝑑௖=1+0.2 ඥ𝐾௣ ஽஻ for any Φ 

    𝑑௤=𝑑ఊ=1.0 for Φ =0଴ 

    𝑑௤=𝑑ఊ=1+0.1 ඥ𝐾௣ ஽஻ for any Φ≥ 10଴  

 The inclination factors are given by 

    𝑖௖=𝑖௤=ቀ1 − ఏ ଽ଴బ ቁଶ
 for any Φ 



    𝑖ఊ=1 for Φ=0଴ 

    𝑖ఊ=ቀ1 − ఏ஍ ቁଶ
 for Φ≥ 10଴  

where 𝐾௣=𝑡𝑎𝑛ଶ ቀ45଴ + ஍ଶ ቁ and 𝜃 =angle of inclination of load with respect to vertical. 

It is further suggested that the value of Φ for the plane strain condition expected in long 

rectangular footings can be obtained from Φ୲୰୧ୟ୶୧ୟ୪  as Φ௣௦=ቀ1.1 − 0.1 ஻௅ቁ Φ୲୰୧ୟ୶୧ୟ୪  
The Meyerhof's bearing capacity factors can be obtained from chart in Fig 2.11.  
 

2.2.1.3.1 Brief Comparison between Meyerhof's Analysis and Terzaghi's Analysis 
 

As already explained, Terzaghi assumed the failure zones to be formed as shown in Fig 

2.6. Meyerhof assumed the failure zones to be formed as shown in Fig 2.12. 

Zone Ι is elastic zone with its sides inclined at φ to the horizontal where, φ = ቀ45଴ + ஍ଶ ቁ. It may 

be recalled that 𝜑 = Φin Terzaghi’s analysis. Zone II is radial shear zone with one set of radial 

planes radiating from corner of footing, as in Terzaghi’s analysis.  



 

Fig 2.11: Bearing capacity factors and critical depth ratios Lc /dfor driven piles 

(after Meyerhof, 1976)  

 



Fig 2.12: Failure Zones Assumed in Meyerhof's Analysis 

 

Zone III is mixed shear zone. Unlike in Terzaghi’s analysis the logarithmic spiral extends 

right up to the ground surface. It should be noted that Meyerhof assumed the failure zones to 

extend above base level of the footing, whereas in Terzaghi’s analysis the failure zones are 

assumed not to extend above the base level of footing. Where as in Terzaghi’s analysis the 

shearing resistance of soil above base level of footing is neglected, in Meyerhof’s analysis it is 

considered. Thus Meyerhof’s analysis is preferred when the depth of foundation is large. In 

Meyerhof’s analysis the bearing capacity factors depend on four quantities 

1) Angle of shearing resistance Φ of soil, 

2) Shape of footing, 

3) Depth of footing and 

4) Roughness of the base of footing. In Terzaghi’s analysis they depend only on Φ. 
 

2.2.1.4 Hansen’s Analysis 
 

J. Brinch Hansen (1970) proposed what is referred to as general bearing capacity equation. 𝑞௙ = 𝑐𝑁௖𝑆௖𝑑௖𝑖௖𝑏௖𝑔௖ + 𝑞௢𝑁௤𝑆௤𝑑௤𝑖௤𝑏௤𝑔௤ + 0.5 𝛾𝐵𝑁ఊ𝑆ఊ𝑑ఊ𝑖ఊ𝑏ఊ𝑔ఊ. . . . Eq 2.7a 

      where, 𝑞௢is the effective overburden pressure at the base level of foundation.  

 

All the factors used in Hansen’s equation are expressed as follows. 

1) Bearing capacity factors 



𝑁௤ = 𝑒గ ୲ୟ୬ ஍ ൬45଴ + Φ2 ൰ 𝑁௖ = (𝑁௤ − 1) cot Φ 𝑁ఊ = (𝑁௤ − 1) tan Φ 

2) Shape factors 𝑆௖ = 0.2 ஻௅ for Φ = 0 𝑆௖ = ቀ1 + ே೜ே೎ ஻௅ቁ  for Φ > 0 

              However, for strip footing 𝑆௖=1 for any Φ. 𝑆௤ = 1 + 𝐵𝐿 tan Φ 

     𝑆ఊ = 1 − 0.4 ஻௅ 

3) Depth factors 

For Φ = 0, 𝑑௖ = 0.4 ஽஻       when 
஽஻ ≤ 1 𝑑௖ = 0.4 tanିଵ ஽஻     when 

஽஻ > 1 

For Φ > 0, 𝑑௖ = 1 + 0.4 ஽஻        when 
஽஻ ≤ 1 𝑑௖ = 1 + 0.4 tanିଵ ஽஻     when 

஽஻ > 1 

  For all Φ, 𝑑௤ = 1 + 2 tan Φ(1 − sin Φ) ஽஻   when 
஽஻ ≤ 1 𝑑௤ = 1 + 2 tan Φ(1 − sin Φ) tanିଵ ஽஻   when 

஽஻ > 1 𝑑ఊ = 1 
 

4) Load inclination factors 𝑖௖ = 0.5 − 0.5ට1 − Q౞஺஼ೌ           for Φ = 0 𝑖௖ = 𝑖௤ − ଵି௜೜ே೜షభ             for Φ > 0 

𝑖௤ = ൬1 − 0.5Q୦Q୴ + ACୟ cot Φ൰ହ
 

𝑖ఊ = ൬1 − 0.7Q୦Q୴ + ACୟ cot Φ൰ହ
 

 



where Q୦ = horizontal component of load Q Q୴ = vertical component of load Q 

            A = contact area of footing Cୟ= unit adhesion on base of footing. 
 

5) Base inclination factors bୡ = ஑ଵସ଻          for Φ = 0  bୡ = 1 − ஑ଵସ଻    for Φ > 0 b୯ = eିଶ஑ tan Φ bஓ = eିଶ.଻஑ tan Φ 

 

where, α = angle in degrees made by base with horizontal line gୡ = ஒଵସ଻   for Φ = 0 gୡ = ቀ1 − ஒଵସ଻ቁ   for Φ > 0 

 g୯ = gஓ = (1 − 0.5 tan β)ଶ 

 

where, β = angle in degrees made by ground surface with horizontal 

To a great extent, Hansen’s work is an extension of Meyerhof’s analysis, as is 

evident from comparison between the two equations. To include conditions for 

footing on slope Hansen has introduced two additional factors viz., the ground 

factors and base factors. 
 

2.2.1.5Skempton’s Analysis 

Skempton (1951) based on his investigations of footings on saturated clays observed that 

the bearing capacity factor 𝑁௖ is a function of ratio D/B in the case of strip footing and square or 

circular footings, for Φ = 0 condition. He presented the chart in Fig 2.13 which gives 𝑁௖ for 

different values of D/B. The value of 𝑁௖ obtained from the chart can be used to compute the net 

ultimate bearing capacity, 𝑞௡௙. 𝑞௡௙= c𝑁௖ 



where, c= unit cohesion of soil which can be obtained from unconfined  compression test. 

He suggested that Nc for a rectangular footing can be obtained from Nc of square footing 

with same D/B ratio using the following relationship. 

𝑁௖(௥௘௖௧௔௡௚௟௘) = ൬0.84 + 0.16 𝐵𝐿൰ × 𝑁௖(௦௤௨௔௥௘) 

 

        Fig 2.13: Skempton’s bearing capacity factor, Nc 

 

It is clear from Fig 2.13that for a footing resting on surface ( D=0),  𝑁௖ = 5.14 for strip footing 𝑁௖ = 6.2 for square or circular footing  

The maximum values of 𝑁௖ are 7.5 for strip footing and 9 for square or circular footing. 

2.2.1.6  Upper Bound Solutions to the Bearing Capacity of a Footing on Saturated Clay 
 

Limit analysis is a powerful method for stability analysis and limit bearing capacity of 

engineering structures. Ingeotechnical engineering, upper bound limit analysis is widely used to 



analyze the slope stability.  Drucker (1952) firstly presented limit analysis based on plastic limit 

theorem, and then Chen (1975) introduced limit analysis into the geotechnical engineering for 

analyzing the bearing capacity, earth pressure on retaining wall and slope stability. It takes 

advantage of the lower and upper theorems of classical plasticity to bracket the true solution 

from a lower bound to an upper bound. However, it is difficult to obtain analytical solution for 

practical engineering, and numerical approaches are often required for limit analysis. In the past 

three decades, many studies have been devoted to developing numerical methods of limit 

analysis. 

The shear strength of a saturated clay under undrained condition may be assumed as: 𝑆 = 𝑐௨ 

i.e., 𝜑 = 0° 

To find the upper bound solutions for the footing and slip surfaces refer Fig 2.14 

 

Fig 2.14: Kinematically Admissible Mechanisms 

In case (a) the slip surface is assumed to be a semi-circle with centre at O, the edge of the 

footing. 



Considering a section 1m thick and constant shear resistance of 𝑐௨ around the failure surface 

consider the work done by the applied load 𝑞௨ and soil resistance 𝑐௨. Thus referring to diagram 

(b) and equating: 

External work = Internal work 

It follows that: 

(𝑞௖𝐵) ൬𝐵 𝜃2൰ = (𝜋𝐵𝑐௨)(𝐵𝜃) 

     𝑞௖ = 2𝜋𝑐௨ 

                                                                   Or 𝑞௖ = 6.3𝑐௨ 

This is an upper bound solution of the collapse pressure for the mechanism shown in Fig 2.14(b) 

The previous result could have also been achieved by equating the sum of the moments about O 

so that, 

(𝑞௖𝐵) ൬𝐵2൰ = (𝑐௨)(𝜋𝐵)𝐵 

                                                                  Or 𝑞௖ = 2𝜋𝑐௨ 

If the slip surface is assumed to be a part of a circle with centre at O, vertically above the edge of 

the footing as shown in Fig 2.9c, then, 𝐵 = 𝑅 sin 𝜃 

And arc length = 2𝑅𝜃 (𝜃 in radians) 

So that, for ∑ 𝑀௢ = 0, 

𝑞௖(𝑅 sin 𝜃) ൬𝑅 sin 𝜃2 ൰ = 𝑐௨(2𝑅𝜃)(𝑅) 

Or  𝑞௖ = 𝑐௨𝜃𝑠𝑖𝑛ଶ𝜃 



Now, 𝑑𝑞௖𝑑𝜃 = 4𝑐௨ ൬ 1𝑠𝑖𝑛ଶ𝜃 − 2𝜃𝑐𝑜𝑠𝜃𝑠𝑖𝑛ଷ𝜃 ൰ 

                                                              = 0 (for minimum value of 𝑞௖) 

Therefore, minimum value occurs when 𝑛𝜃 = 2𝜃 , i.e., when 𝜃 ≈ 66° (1.15 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 

Therefore,  

𝑞௖ ௠௜௡ = 𝑐௨1.15(0.913)ଶ 

= 5.5𝑐௨ 

This is the minimum value of the upper-bound estimate of the collapse pressure which 

can be obtained with a circular slip surface and with O located at the edge of the footing. Thus it 

can be seen that by the use of these simple bounded solutions it can be inferred that the value of 

the true collapse load, for this short-term analysis, lies between 5.0𝑐௨ and 5.5𝑐௨ 

2.2.1.7  The Standard Penetration Test (SPT) 
 

When a cohesionless soil is loaded as, for example, in a consolidation test the void ratio-

applied vertical stress curve obtained is dependent on the initial relative density of the soil. i.e., 

there is no unique void ratio-pressure curve as there is for clay. Because of this fact, it is essential 

to know the in-situ relative density values of any cohesionless soils that occur at a particular site. 

It is extremely difficult however to sample cohesionless soils and to prepare samples for 

laboratory tests without necessarily disturbing them in process. 
 

Consequently, it is usual to infer soil properties such as relative-density, angle of internal 

friction, and compressibility, indirectly from the results of Standard Penetration Test or Static 

Cone Penetration. 
 

Other, more sophisticated methods of measuring in-situ soil properties exist, such as 

Pressuremeter tests for use on important jobs but only SPT will be discussed here.  



Site investigation data provide values of the S.P.T blows per 30cm (blows per foot) 

required to drive a standard split-spoon sampling tube into the cohesionless soil using a standard 

energy input. These SPT values are termed the Nfield values.  
 

The field N values are affected by the magnitude of the effective vertical overburden 

pressure at the level of the split-spoon in the bore-hole at the time of the test. Consequently, it is 

necessary to standardize the N values to a particular vertical stress value. 

The approach suggested by Peck Hansen & Thornburn (1974) was to use a value of 𝜎'v = 100 

kPa as the standard and to correct the field values N values according to Eq 2.8 𝑁௖௢௥௥ =  𝑁௙௜௘௟ௗ  ×  𝐶ே …… Eq 2.8 

where the 𝐶௡ values are given in Fig 2.4 

It can be seen from Fig 2.15 that 𝐶ே = 1.0 for 𝜎'v = 100 kPa. It should also be noted that 

to calculate the effective overburden pressures it is necessary to know both the ground surface 

and ground-water elevations for each borehole. 

 



 

 

Fig 2.15: Chart for correction on N-values in sand for influence of overburden pressure 

[reference value of effective overburden pressure 1 ton/sq.ft (100 kPa) After Peck, Hansen 

& Thornburn (1974)]  

 

 

 

 

 



2.3 Bearing capacity of footings on Layered Soils 
 

 

Fig 2.16: Simplified bearing capacity for a 𝝋 − 𝒄 soil. 

It may be necessary to place footings on stratified deposits where the thickness of the top 

stratum from the base of the footing d1is less than the H distance computed as in Fig 2.16. In this 

case the rupture zone will extend into the lower layer(s) depending on their thickness and require 

some modification of qult. There are three general cases of the footing on a layered 

soil as follows:    

Case 1. Footing on layered clays (all φ = 0) as in Fig 2.17(a). 

a. Top layer weaker than lower layer (c1< c2) 

b. Top layer stronger than lower layer (c1> c2) 

Case 2. Footing on layered φ -c soils with a, b same as case 1. 

Case 3. Footing on layered sand and clay soils as in Fig. 2.17(b). 

a. Sand overlying clay 

b. Clay overlying sand 



 

(b) 
 

Fig 2.17: Footings on layered soil. 
 

Experimental work to establish methods to obtain qult for these three cases seems to be 

based mostly on models—often with B <75 mm. Several analytical methods exist as well, and 

apparently the first was that of Button (1953), who used a circular arc to search for an 

approximate minimum, which was found (for the trial circles all in the top layer) to give Nc = 5.5  
 

The use of trial circular arcs can be readily programmed for a computer for two or three 

layers using su for the layers. Note that in most cases the layer su will be determined form qu tests, 



so the circle method will give reasonably reliable results. It is suggested that circular arcs be 

limited to cases where the strength ratio CR = c2/c1of the 

top two layers is on the order of 

0.6 <CR ≤ 1.3 

Where CRis much out of this range there is a large difference in the shear strengths of the 

two layers, and one might obtain Nc using a method given by Brown and Meyerhof (1969) based 

on model tests as follows: 

For CR≤ 1  

Nc,s=  ଵ.ହௗభ஻ + 5.14𝐶𝑅 ≤ 5.14    (for strip footing)  

……Eq 2.9 

For a circular base with B = diameter 

 

Nc,r=  ଷ.଴ௗభ஻ +  6.05𝐶𝑅 ≤ 6.05    (for round base)  

……Eq 2.9a 

When CR>0.7 reduce the foregoing Nc,iby 10 percent. 

For CR>1 compute: 

N1,s = 4.14+ 
଴.ହ஻ௗభ (strip)  

……Eq 2.9b 

N2,s = 4.14+ 
ଵ.ଵ஻ௗభ  

……Eq 2.9c 

N1,r = 5.05+ 
଴.ଷଷ஻ௗభ (round base)  

……Eq 2.9d 

N2,r = 5.05+ 
଴.଺଺஻ௗభ  

……Eq 2.9e 

In the case of CR>1 we compute both N1,i and N2,i depending on whether the base is 

rectangular or round and then compute an averaged value of Nc,ias 



 𝑁௖,௜ = 𝑁ଵ,௜ × 𝑁′ଶ,௜𝑁ଵ,௜ + 𝑁ଶ,௜ × 2 

……Eq 2.9f 

 

When the top layer is very soft with a small d1/B ratio, one should give consideration 

either to placing the footing deeper onto the stiff clay or to using some kind of soil improvement 

method. Model tests indicate that when the top layer is very soft it tends to squeeze out from 

beneath the base and when it is stiff it tends to "punch" into the lower softer layer [Meyerhof and 

Brown (1967)].  
 

2.4 Eccentric and Inclined loading 
 

It has so far been assumed that the loads on a foundation were vertical. However, 

footings may be subjected to inclined loads and/or eccentric loading. In this event symmetrical 

bearing capacity mechanisms are not appropriate and the bearing capacity is reduced. The effect 

of both load eccentricity and inclination is to reduce the allowable bearing pressure quite 

significantly; therefore, efforts should be made, if possible, to change the structural layout to 

avoid or minimize these effects. 

2.4.1 Eccentric Loading 
 

In some situations it may be possible to: 

1) Revise the structural layout to avoid eccentric loading, or 

2) If the load condition is not variable, it may be possible to make the centre of area of 

the footing coincident with the load. 

If these remedies are not possible then the reduced bearing capacity must be determined. One 

commonly used technique is presented in the following discussion. 

2.4.1.1 Contact Pressure Distribution 
 

If a rectangular rigid footing of width, B, and length, L, as shown in Fig 2.18(a), is subjected 

to a vertical load, P, located with eccentricities eb and eL from the centre line in the x and y  



directions, respectively, the contact pressure distribution can be determined as: 𝑝 =  ௉஺ + ெೣ ௬ூೣ + ெ೤௫ூ೤                                          …Eq2.10 

where, 𝑀௫ =PeL 𝑀௬ =PeB 

𝐼௫ = 𝐵𝐿312 for contact over the full area  

𝐼௬ = 𝐿𝐵312 for contact over the full area  

𝑎𝑛𝑑  ‘x ’ and ‘y ’ are distances from x and y axis to the point for which the pressure is 

required. 

Provided eb<
஻଺and eL <

௅଺contact over full area will be maintained and footings should 

normally be proportioned to ensure that this is the case. In this event Eq.2.10 can be expressed 

as, 𝑝 =  ௉஺ ቂ1 + ଺௘ಽ௅ + ଺௘ಳ஻ ቃ                                  ……Eq2.11 

The pressure distribution obtained from Eq 2.11 is shown qualitatively on Fig 2.18(a) 

2.4.1.2 Concept of Useful Width 
 

To determine the ultimate or allowable bearing capacity of an eccentrically loaded 

footing, the concept of useful width was introduced by Meyerhof (1953) and Hansen (1970). By 

this concept, the rectangular portion of the footing which is symmetrical about the load is 

considered to be useful and the other portion is simply assumed superfluous for the convenience 

of computation. If the eccentricities are eb and eL as shown if Fig 2.18(b), the useful widths are 

(B - 2 eb) and (L – 2 eL). The equivalent area (B - 2 eb) x (L – 2 eL) is considered to be subjected 

to a central load for determination of bearing capacity. 



 

Fig 2.18: Eccentrically loaded footing 

Thus net ultimate bearing capacity of this hypothetical footing can be expressed using the 

equivalent width B′ as, 𝑞௡௘௧ ௨௟௧ = 𝐶′𝑁௖ + 𝛾𝐷௙൫𝑁௤ − 1൯ + 0.5𝛾𝐵′𝑁ఊ   (strip)                               …….Eq 2.12 𝑞௡௘௧ ௨௟௧ = 𝐶′𝑁௖ + 𝛾𝐷௙൫𝑁௤ − 1൯ + 0.4𝛾𝐵′𝑁ఊ   (rectangular)                    …….Eq 2.13 

For particular case of short-term conditions of saturated clay (Cu , φ = 0) 𝑞௡௘௧ ௨௟௧ = 𝐶௨𝑁௖                                                                                          …….Eq 2.14 

       where, 𝑁௖must be determined from Fig 2.18 using 
஽೑஻ᇱ  and 

஻ᇱ௅  



 
Fig 2.19: Bearing capacity factors for foundations on clay under φ = 0 conditions  

(after Skempton, 1951) 

2.4.2 Inclined Loading 
 

The effect of inclined loading on bearing capacity may be taken into account by means of 

inclination factors. 

Recommendations regarding these factors have been given by Meyerhof (1953) and 

Hansen (1970) and others and these are summarized in Bowles (1974). The following values are 

those due to Meyerhof (1953). If the angle of inclination of the resultant load, P, to the vertical is 

‘α’, then the bearing capacity factors 𝑁ఊ , 𝑁௖ 𝑎𝑛𝑑 𝑁௤ should be multiplied respectively by the 

following factors. 



𝑖ఊ = ቀ1 − ఈఝቁଶ
                                         …..Eq 2.15a 

𝑖௖ =  𝑖௤ = ቀ1 −  ఈଽ଴ቁଶ
                           …..Eq 2.15b 

The bearing capacity equations for a continuous footing on cohesionless and cohesive soils 

become, respectively: 𝑞௡௘௧ ௨௟௧ = 0.5𝛾𝐵𝑁ఊ𝑖ఊ + 𝛾𝐷௙൫𝑁௤𝑖௤ − 1൯                  …….Eq 2.15c 𝑞௡௘௧ ௨௟௧ = 𝐶௨𝑁௖𝑖௖                                                       …….Eq 2.15d 

For footing shapes other than a continuous strip, appropriate shape factors may be 

introduced. 

Eq 2.15c and Fig 2.15d show that for a given value of α the 𝑖ఊ term may become 

significantly less than the 𝑖௤ term. In this event the ultimate bearing capacity of footings (with 

inclined loading) may be mostly due to the effect of the surcharge. Consequently the designer 

should be careful to assess the effective surcharge pressure conservatively. 
 

2.4.3 Combined Eccentric and Inclined Loading 
 

When a footing is subjected to a load Q which are both eccentric and inclined, corrections 

must be applied for both of these conditions. Eq 2.16a and Eq 2.16b are to be used for 

cohesionless and cohesive soils respectively. 𝑞௡௘௧ ௨௟௧ = 0.5𝛾𝐵′𝑁ఊ𝑖ఊ + 𝛾𝐷௙൫𝑁௤𝑖௤ − 1൯                 …….Eq 2.16a 𝑞௡௘௧ ௨௟௧ = 𝐶௨𝑁௖𝑖௖                                                       …….Eq 2.16b 

In Eq. 2.16b the bearing capacity factor, 𝑁௖ , is determined using the useful width, 𝐵′ , 
and if appropriate, the useful length, 𝐿′. 

 

2.4.4 Settlement under Eccentric and Inclined Loading   

Some indication of the average settlement of a footing under eccentric and/or inclined 

loading may be gained by assuming that the vertical component of the load, Q, acts uniformly 

over the equivalent area, (B - 2 eb) x (L - 2 eL). Settlement calculations should then proceed. This 



approach will not, however, provide any estimate of the rotation of the footing induced by the 

eccentricity and the horizontal component of the load, and should therefore be used with caution. 

2.5 Bearing Capacity of Footings on Slopes 
 

There are occasions where structures are required to be built on slopes or near the edges 

of slopes. Since full formations of shear zones under ultimate loading conditions are not possible 

on the sides close to the slopes or edges, the supporting capacity of soil on that side get 

considerably reduced. Meyerhof (1957) extended his theories to include the effect of slopes on 

the stability of foundations. 

Fig 2.20 shows a section of a foundation with the failure surfaces under ultimate loading 

condition. The stability of the foundation depends on the distance 𝑏തof the top edge of the slope 

from the face of the foundation.  

The ultimate bearing capacity equation for a strip footing may be expressed as 

(Meyerhof, 1957) 𝑞௨ = 𝑐𝑁௖௤ + 12 𝛾𝐵𝑁ఊ௤ 

…….Eg 2.17a 
 

The upper limit of the bearing capacity of a foundation in a purely cohesive soil may be 

estimated from 𝑞௨ = 𝑐𝑁௖௤ + 𝛾𝐷௙ 

…….Eg 2.17b 
 

The resultant bearing capacity factors Ncq and 𝑁ఊ௤depend on the distance  𝑏ത , 𝛽, 𝜑 and 

the Df / B ratio. These bearing capacity factors are given in Fig 2.20(a) and Fig 2.20(b) for strip 

foundation in purely cohesive and cohesionless soils respectively. It can be seen from the figures 

2.20 (a) and 2.20 (b) that the bearing capacity factors increase with an increase of the distance 𝑏ത 

.Beyond a distance of about 2 to 6 times the foundation width B, the bearing capacity is 

independent of the inclination of the slope, and becomes the same as that of a foundation on an 

extensive horizontal surface.  
 

For a surcharge over the entire horizontal top surface of a slope, a solution of the slope 

stability has been obtained on the basis of dimensionless parameters called the stability number 

Ns , expressed as 



𝑁௦ = 𝑐𝛾𝐻 

 

Fig 2.20: Bearing capacity of a strip footing on top of a slope (Meyerhof, 1957) 
 

 The bearing capacity of a foundation on purely cohesive soil of great depth can be 

represented by Eq. 2.17b where the Ncq factor depends on 𝑏തas well as 𝛽, and the stability number 

Ns. This bearing capacity factor, which is given in the lower parts of Fig 2.17a, decrease 

considerably with greater height and to a smaller extent with the inclination of the slope. For a 

given height and slope angle, the bearing capacity factor increases with an increase in 𝑏ത , and 

beyond a distance of about 2 to 4 times the height of the slope, the bearing capacity is 

independent of the slope angle. Figure 2.21(a) shows that the bearing capacity of foundations on 

top of a slope is governed by foundation failure for small slope height (Ns approaching infinity) 

and by overall slope failure for greater heights.  

The influence of ground water and tension cracks (in purely cohesive soils) should also 

be taken into account in the study of the overall stability of the foundation. Meyerhof (1957) has 

not supported his theory with any practical examples of failure as any published data were not 

available for this purpose. 



 

Fig 2.21(a): Bearing capacity factors for strip foundation on top of slope of purely 

cohesive material (Meyerhof, 1957)  



 

Fig 2.21(b): Bearing capacity factors for strip foundation on top of slope of cohesionless 

material (Meyerhof, 1957) 
   

 

2.6 Foundation Settlement 

2.6.1 Calculation of Settlement: General comments 
 

The settlement of a structure is the result of the deformation of the supporting soil, 

and may result from: 



(1) Elastic deformation of the foundation soil, 

(2) Volume changes in the soil due to reduction of the water content (consolidation), or 

the air content (compaction) 

(3) Plastic deformation of the soil due to loading at relatively high stress levels, 

(4) Other factors such as long-term creep effects in cohesive soils, effect of vibrations on 

cohesionless soils, sink-hole formation or mining subsidence. 
 

2.6.2 Permissible Settlement 
 

The maximum settlement of a structure is of great concern because appearance, access 

and services attached to the building may be affected. However, if one part of the building settles 

more than another, the structural frame can be distorted and the effects are likely to be more 

serious than if the settlements were relatively uniform. For conventional foundations using 

isolated footings some differential settlement will usually occur because of the natural variability 

of the soil compressibility across the site even if the total settlements are calculated to be 

uniform. If a raft foundation is provided then the structural rigidity of the foundation assists in 

minimizing these differential settlements. 
 

It is difficult to provide definite criteria for the allowable settlement of structures since, in 

some countries, structural settlements of several meters have occurred and been tolerated by the 

structure. However these occurrences should be considered as special cases. Special care should 

also be taken with structures with high aspect ratio such as towers or chimneys since non-

uniform settlement of the base may result in excessive tilting. 
 

Differential settlements are frequently controlled indirectly by limiting the design total 

settlement. For conventional buildings it is usual to limit the total settlement so as not to exceed 

the following approximate listed in Table 2.2. 

 

 

 

 

 

 

 



Table 2.2 Permissible differential settlements and tilt for shallow foundations (reproduced 

with permission from the Bureau of Indian Standards) 

 

 

These values are only a rough guide to maximum acceptable settlement values. Normally 

footings on sand would be restricted to design value of 25 mm (1 inch). 

The allowable differential settlement is equally difficult to specify since it is influenced 

by such factors as: 

1) The flexibility of the structural frame and architectural façade. 

2) The ductility of the construction materials. 

3) The time interval during which settlement occurs. If the rate of settlement is slow, 

most structures can themselves deform plastically and better accommodate to the 

deformation caused by differential settlement. 

Approximate limitations to the magnitude of angular distortion due to differential 

settlements commonly quoted for various classes of structures are provided in Table 2.3 and Fig 

2.22. 



 

Table 2.3: Angular distortion limits (reproduced with permission from the Bureau of  

Indian Standards) 

Rotation limits for structure 

Relative 

rotation 
Type of limit and structure 

1740 
 Limit where difficulties with machinery sensitive to settlements are to be 

feared. 1600 
 Limit of danger for frames with diagonals. 

1500 
 Safe limit for buildings where cracking is not permissible. 

1300 
 Limit where first cracking in panel walls is to be expected.  

 Limit where difficulties with overhead cranes are to be expected. 1250 
 Limit where tilting of high, rigid buildings might become visible. 

1100 
 Considerable cracking in panel walls and brick walls. 

 Safe limit for flexible brick walls. h/l <
ଵସ 

 Limit where structural damage of general buildings is to be feared. 

 

Design limits on differential settlement are frequently set in totally unrealistic terms. In fact, 

each structure must be considered individually, and the values given above should be used only 

as a guide. 



 

Fig 2.22: Typical section through structure for Differential Settlement and Angular 

Distortion Related to Building Performance 
 

2.6.3 Shallow Foundations on Clay: Settlement 
 

In addition to bearing capacity, the consolidation settlement of footings on clay should be 

evaluated. The settlement estimates are based on one-dimensional consolidation theory and 

oedometer test data.  

 In practice, footings are dimensionally finite, and therefore, some lateral strains occur 

during loading and the estimated ‘oedometer’ settlement may be in error. It is common 

procedure to apply a correction which makes an allowance for footing geometry and the 

geological history of the clay deposits. Hence, 𝜌(𝑓𝑖𝑒𝑙𝑑) =  𝜇 × 𝜌(𝑜𝑒𝑑𝑜𝑚𝑒𝑡𝑒𝑟) 

where, 𝜇 is a correction factor which may be taken from the Fig 2.23. 



 

Fig 2.23: Settlement coefficient versus pore-pressure coefficient for circular and strip 

footings. [Reproduced with permission from Scott (1963)]  
 

 Long term creep settlement or secondary compression may occur after excess pore-water 

pressures have dissipated. The relative importance of this settlement varies with the type of soil, 

the ratio of the load increment to initial stress and the thickness of the soil deposit.  
 

2.6.4 Components of Total Settlement 
 

The total settlement of a foundation comprises three parts as follows 

S = Se+Sc+Ss 
 

where, 

S = total settlement 

Se = elastic or immediate settlement 

Sc = consolidation settlement 

Ss = secondary settlement 

Immediate settlement, Se, is that part of the total settlement, S, which is supposed to take 

place during the application of loading. The consolidation settlement is that part which is due to 



the expulsion of pore water from the voids and is time-dependent settlement. Secondary 

settlement normally starts with the completion of the consolidation. It means, during the stage of 

this settlement, the pore water pressure is zero and the settlement is only due to the distortion of 

the soil skeleton. Footings founded in cohesionless soils reach almost the final settlement, S, 

during the construction stage itself due to the high permeability of soil. The water in the voids is 

expelled simultaneously with the application of load and as such the immediate and 

consolidation settlements in such soils are rolled into one. In cohesive soils under saturated 

conditions, there is no change in the water content during the stage of immediate settlement. The 

soil mass is deformed without any change in volume soon after the application of the load. This 

is due to the low permeability of the soil. With the advancement of time there will be gradual 

expulsion of water under the imposed excess load. The time required for the complete expulsion 

of water and to reach zero water pressure may be several years depending upon the permeability 

of the soil. Consolidation settlement may take many years to reach its final stage. Secondary 

settlement is supposed to take place after the completion of the consolidation settlement, though 

in some of the organic soils there will be overlapping of the two settlements to a certain extent. 

Immediate settlements of cohesive soils and the total settlement of cohesionless soils may be 

estimated from elastic theory. The stresses and displacements depend on the stress-strain 

characteristics of the underlying soil. A realistic analysis is difficult because these characteristics 

are nonlinear. Results from the theory of elasticity are generally used in practice, it being 

assumed that the soil is homogeneous and isotropic and there is a linear relationship between 

stress and strain. A linear stress-strain relationship is approximately true when the stress levels 

are low relative to the failure values. The use of elastic theory clearly involves considerable 

simplification of the real soil. Some of the results from elastic theory require knowledge of 

Young's modulus (Es), here called the compression or deformation modulus, Ed, and Poisson's 

ratio, 𝜇, for the soil.  



 

Figure 2.24Overburden pressure and vertical stress distribution  
 

2.6.5 Seat of Settlement 
 

Footings founded at a depth Df  below the surface settle under the imposed loads due to 

the compressibility characteristics of the subsoil. The depth through which the soil is compressed 

depends upon the distribution of effective vertical pressure p'o of the overburden and the vertical 

induced stress ∆p resulting from the net foundation pressure qn as shown in Fig. 2.24. 

In the case of deep compressible soils, the lowest level considered in the settlement analysis is 

the point where the vertical induced stress ∆p is of the order of 0.1 to 0.2qn, where qn is the net 

pressure at the base of foundation. This depth works out to about 1.5 to 2 times the width of the 

footing. The soil lying within this depth gets compressed due to the imposed foundation pressure 

and causes more than 80 percent of the settlement of the structure. This depth DS is called the 

zone of significant stress. If the thickness of this zone is more than 3 m, the steps to be followed 

in the settlement analysis are  
 

1) Divide the zone of significant stress into layers of thickness not exceeding 3 m, 

2) Determine the effective overburden pressure p'o at the center of each layer, 

3) Determine the increase in vertical stress ∆p due to foundation pressure q at the center 

of each layer along the center line of the footing by the theory of elasticity,  



4) Determine the average modulus of elasticity and other soil parameters for each of the 

layers. 

5) Compute settlement of each layer and add to get total settlement. 
 

2.6.6 Settlement of Foundations on Cohesionless Soils 
 

The techniques developed by Schmertmann (1970) and provided in Craig (1983), are 

available for situations where the designer wishes to assess the foundation settlement as 

accurately as possible; however, in this section only two methods of calculating settlement of 

foundations on sand will be discussed as listed below. 

(1) For isolated footings, empirical design relationships or charts are available which 

have been developed from field observations of actual footings. The relative density 

of the in-situ deposits is required to be known and in practice this is inferred 

indirectly from the results of Standard Penetration Test or Static Cone Penetration 

Test. 

(2) For those cases where the influence of the applied loads extends to a significant depth 

in compressible granular deposits a modified form of the theory of consolidation is 

frequently employed, using various modifications of the equation 𝑆 =  𝐻 𝐶௖1 +  𝑒଴ log (𝜎௩௢ᇱ + ∆𝜎௩)𝜎௩௢ᇱ  

in which the in-situ compressibility of the soil, 𝐶௖, is inferred either from the standard        

penetration test or preferably from static cone penetration tests.  
 

For the approach given as item (1) above, Peck et al. (1974) indicated that typical load-

settlement relationships exist for footings of different widths on the surface of a homogeneous 

sand deposit as illustrated in Fig 2.25 



 

Fig 2.25: Load-settlement curves for footings of increasing widths A, B and C and constant 𝑫𝒇𝑩  ratio on sand of uniform relative density. 

 

 These curves show that at low stress levels there is a linear relationship between pressure 

and settlement. However as the applied pressure is increased, part of the soil below the footing 

starts to yield (see figure 2.25), the load settlement relation becomes curved and if the soil 

pressure becomes sufficiently high, complete failure of the underlying soil can occur. 
 

 The maximum pressure that a given cohesionless soil can withstand increases with the 

size of the footing. Consequently if, as shown in Fig 2.24, three footings of increasing size A, B 

and C, are loaded so as to achieve the same settlement then the required pressures pa, pb, pc will 

vary as shown. The large footing will have produced only elastic stress levels in the soil and the 

settlement will be essentially recoverable. On the other hand, for the small footing, pa is close to 

the ultimate failure pressure and the settlement in this case will be predominantly plastic or 

irrecoverable. Footing (A) will also be on the verge of complete collapse. The intermediate size 

footing (B) will have some plastic yielding of the underlying soil but will not yet have reached 

complete failure. 
 

 The foregoing discussion depends, as well, on the amount of settlement being permitted. 

For these reasons the relationship between design settlement, footing size and allowable bearing 



pressure is quite complex. For a design settlement value of 25mm (1 in.) Peck et al (1974) 

concluded from analysis of actual footings that the pressure-settlement relationship for various 

footing widths, could be approximately expressed independently of footing size as,                𝑝 = 11.0 ×  𝑁௖௢௥௥(𝑘𝑃𝑎) ≅  𝑞௡௘௧ ௔௟௟௢௪                       …..Eq 2.18  Where, 

p = net vertical pressure applied by the footing for which the settlement    

                   should not exceed 25mm provided the ground water table is located  

                   below a depth B below the base of the footing (B being the least width  

                   of the footing)              𝑁௖௢௥௥ = design value of the corrected SPT blow count. 

Equation 2.18 is purely empirical and based largely on field observations. Consequently 

its use should be limited to standard design situations similar to the field examples from which 

the original data was obtained. With this restriction and despite the fact that the SPT is subject to 

many errors, Eq. 2.18 provides a satisfactory design tool when used with sound judgment. 
 

For those design situations where the ground water table is located above a depth B 

below the base of the footing the compressibility of the soil is increased by the reduction in 

effective stresses due to water. It is not easy to quantify the increase in settlement due to a rise in 

ground water level. It is usual, however, to simply multiply the pressure ‘p’ given by the Eq.2.18 

by a water table correction factor ‘Cw’. Peck et al. (1974) suggested the following empirical 

relationship for Cw.                                          𝐶௪ = 0.5 ൬1 + ஽ೢ஽೑ା ஻൰                                             ……Eq. 2.19 

             where, Dw is the depth of water table below the ground surface                            

                         B is the least width of the footing and, 

                         Df is depth of the foundation. 

 For this general case Eq. 2.18 then becomes,                                                        𝑝 = 11.0 ×  𝐶௪ × 𝑁௖௢௥௥(𝑘𝑃𝑎)                                    ..…Eq. 2.20 
 

It should be emphasized that the settlement criterion of Eq.2.20 was obtained from field 

measurements of actual footings. A considerable amount of scatter of field data can always be 

expected and the relationship given by Eq.2.20 was selected to ensure that the footing settlement 

would not exceed 25mm. The settlement of any one footing could be much less.   
  



On this basis, then, it can be expected that the differential settlement between any two 

adjacent columns would be limited to about 20mm (0.75 ins.). This value would provide an 

angular distortion of 0.0033 if the columns were spaced approximately 6m apart. This is a 

commonly used design value. 
 

 If a footing is to be designed for an allowable settlement greater than the standard value 

of 25mm (1 in.) then the allowable bearing pressure may be increased assuming a linear 

relationship between pressure and settlement. However, the F.S on bearing capacity may govern 

the design and should be checked. This procedure is based on the premise that provided a FS of 

at least 2 is maintained on bearing capacity, the stresses below the footing remain essentially 

elastic and provide a linear relationship between settlement and applied pressure. 
 
 

2.6.7 Settlement of Foundations on Saturated Cohesive Soil 
 

 Most of the settlement of foundations on saturated cohesive soils is usually due to 

consolidation and associated dissipation of excess pore-water pressure. The method of 

calculation of such settlement using the results of consolidation tests is always used for the 

design of important structures. 

 Provided the vertical stress levels remain below the preconsolidation pressure 

approximate estimates of long-term settlement of shallow foundations can be obtained from    𝑆 =  𝜇଴𝜇ଵ𝑞 ஻ா                                                     ……..Eq.2.21 

                       where,  q = net applied foundation pressure 

B = width of foundation 

E = Young’s modulus 𝜇ଵ = parameter which provides the influence of the shape of the loaded area   

                                           and depth of the elastic material. 𝜇଴ = parameter to indicate the influence of the depth of embedment of the  

                                          foundation load. 

by choosing a value of E appropriate to long term, drained conditions. This value of E, denoted 

by Es , is the inverse of the coefficient of volume compressibility, mv. As suggested by Canadian 

Foundation Engineering Manual the values of Es may be approximated from the empirical 

relationship, 



𝐸௦ = 𝑚௦𝜎௣′ 
                        where, 𝜎௣′ =  the effective preconsolidation pressure  𝑚௦ , varies with soil type as follows 

                                   Stiff clays,                                 𝑚௦ = 80 

                                   Firm sensitive clays,                 𝑚௦ = 60 

                                   Soft clays,                                 𝑚௦ = 40 

Some relatively minor amount of settlement, not associated with the dissipation of excess 

pore water pressure, can occur as soon as the foundation is loaded due to lateral deformations of 

the foundation soil. This ‘immediate’ settlement occurs at constant volume of the total soil mass 

and can be computed using Eq. 2.21 provided again, that appropriate values of ‘ν’ and ‘E’ are 

selected. 

 For an elastic material to be deformed at constant volume it can be shown that the value 

of ‘ν’ must be equal to 0.5. Consequently to calculate the immediate settlement of saturated clay 

using a total stress analysis this value of ν must be used. In addition the value of ‘E’ must be 

either obtained from undrained laboratory tests or inferred from actual observations of similar 

structures in the field. The particular value of ‘E’ obtained for undrained loading conditions is 

usually denoted as Eu. The values Eu are generally expressed in terms of the ratio 
ாೠ஼ೠ= constant 

(or 
ாೠௌೠ= constant) where Cu (or Su) is the undrained shear strength of the soil. 

 The following are the approximate values of this ratio as often quoted in the literature, 

Eu = 500 Cu for soft, sensitive clay 

Eu = 1000 Cu for firm to stiff clays 

Eu = 1500 Cu for very stiff clays. 

 

 The immediate settlement of footings on saturated clay can therefore be determined using 

the data shown in Fig 2.26 which has been constructed for ν = 0.5. 

 Long term creep settlements are usually not significant in some highly compressible or 

organic soils. 

 



 

 

Fig 2.26: Values of 𝝁𝟎 and 𝝁𝟏 for settlement calculations  
 

2.8 Design of Axially Loaded Shallow Foundations on Sand   

For cohesionless soils the bearing capacity equation expressed in terms of net ultimate 

bearing capacity becomes, 

Continuous Footing:  𝑞௡௘௧ ௨௟௧ = 𝛾𝐷௙൫𝑁௤ − 1൯ + 0.5𝛾𝐵𝑁ఊ                                         …….Eq.2.22 

Square Footing:  𝑞௡௘௧ ௨௟௧ = 𝛾𝐷௙൫𝑁௤ − 1൯ + 0.4𝛾𝐵𝑁ఊ…….Eq.2.23 



Circular Footing:  𝑞௡௘௧ ௨௟௧ = 𝛾𝐷௙൫𝑁௤ − 1൯ + 0.6𝛾𝑅𝑁ఊ                                         …….Eq.2.24 

Also, 𝑞௡௘௧ = 𝑞௡௘௧ ௨௟௧𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 

        where, Factor of safety ≥ 2 

 

2.9 Types of Bearing Capacity Failure 
 

Experimental investigations have led to recognition of three modes of bearing capacity 

failure, viz., general shear failure, local shear failure and punching shear failure. 

General shear failure can be expected in the case of cohesionless soils and stiff cohesive soils. In 

this type of failure slow downward movement of footing takes place, just before failure, with 

sufficient time for plastic zones to develop fully. In tests on model footings considerable bulging 

of soil on sides of footing has been noticed as shown in Fig 2.27(a). 

Local shear failure can be expected in the case of loose cohesionless soils and soft 

cohesive soils. If soil is more compressible, large deformation occurs below the footing before 

the plastic zones are fully developed. In tests on model footings slight bulging of soil on sides of 

footing has been noticed as shown in Fig 2.27(b). 

Both general shear failure and local shear failure were recognized by Terzaghi (1943). 

Vesic (1973) in his study on model footings on sand observed that foundations on loose sand 

with density index less than 35 per cent fail by deep penetration into soil without any bulging of 

soil on sides of footing. The plastic zones will be partially developed as shown in Fig 2.27(c). He 

designated this type of failure as punching shear failure. 
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Fig 2.28:  Modes of failure from tests on model footings [Vesic (1973] 
 

 Note:   𝐵*= B for square or circular footing 𝐵*= 
ଶ஻௅஻ା௅ for rectangular footing. 

 

 

 


