Formulas on FLUID MECHANICS
 for GATE Exam

www.gradestack.com/gate-exam

Civil Engineering - Fluid Mechanics

Pressure (\boldsymbol{P}):

- If F be the normal force acting on a surface of area A in contact with liquid, then pressure exerted by liquid on this surface is: $P=F / A$
- Units : $\mathrm{N} / \mathrm{m}^{2}$ or Pascal (S.I.) and Dyne/ cm^{2} (C.G.S.)
- Dimension : $[P]=\frac{[F]}{[A]}=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]$
- Atmospheric pressure: Its value on the surface of the earth at sea level is nearly $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ or Pascal in S.I. other practical units of pressure are atmosphere, bar and torr (mm of Hg)
- $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \mathrm{bar}=760$ torr
- Fluid Pressure at a Point: $\rho=\frac{d F}{d A}$

Density (ρ):

- In a fluid, at a point, density $\boldsymbol{\rho}$ is defined as: $\rho=\lim _{\Delta V \rightarrow 0} \frac{\Delta m}{\Delta V}=\frac{d m}{d V}$
- In case of homogenous isotropic substance, it has no directional properties, so is a scalar.
- It has dimensions $\left[M L^{-3}\right]$ and S.I. unit $\mathrm{kg} / \mathrm{m}^{3}$ while C.G.S. unit $g / c c$ with $1 \mathrm{~g} / \mathrm{cc}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
- Density of body $=$ Density of substance
- Relative density or specific gravity which is defined as : $R D=\frac{\text { Density of body }}{\text { Density of water }}$
- If m_{1} mass of liquid of density ρ_{1} and m_{2} mass of density ρ_{2} are mixed, then as

$$
\begin{array}{ll}
m=m_{1}+m_{2} \text { and } V=\left(m_{1} / \rho_{1}\right)+\left(m_{2} / \rho_{2}\right) & \quad[\text { As } V=m / \rho] \\
\rho=\frac{m}{V}=\frac{m_{1}+m_{2}}{\left(m_{1} / \rho_{1}\right)+\left(m_{2} / \rho_{2}\right)}=\frac{\sum m_{i}}{\sum\left(m_{i} / p_{i}\right)} &
\end{array}
$$

If $m_{1}=m_{2}, \rho=\frac{2 \rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}}=$ Harmonic mean

- If V_{1} volume of liquid of density ρ_{1} and V_{2} volume of liquid of density ρ_{2} are mixed, then as: $m=\rho_{1} V_{1}+\rho_{2} V_{2}$ and $V=V_{1}+V_{2}$ [As $\rho=m / V$]

If $V_{1}=V_{2}=V \quad \rho=\left(\rho_{1}+\rho_{2}\right) / 2=$ Arithmetic Mean

- With rise in temperature due to thermal expansion of a given body, volume will increase while mass will remain unchanged, so density will decrease, i.e.,

$$
\begin{array}{ll}
\frac{\rho}{\rho_{0}}=\frac{(m / V)}{\left(m / V_{0}\right)}= & \left.\frac{V_{0}}{V}=\frac{V_{0}}{V_{0}(1+\gamma \Delta \theta)} \quad \quad \text { As } V=V_{0}(1+\gamma \Delta \theta)\right] \\
& \text { or } \\
\rho=\frac{\rho_{0}}{(1+\gamma \Delta \theta)} \simeq \rho_{0}(1-\gamma \Delta \theta)
\end{array}
$$

- With increase in pressure due to decrease in volume, density will increase, i.e.,

$$
\frac{\rho}{\rho_{0}}=\frac{(m / V)}{\left(m / V_{0}\right)}=\frac{V_{0}}{V} \quad\left[\text { As } \rho=\frac{m}{V}\right]
$$

- By definition of bulk-modulus: $B=-V_{0} \frac{\Delta p}{\Delta V}$ i.e., $V=V_{0}\left[1-\frac{\Delta p}{B}\right]$

$$
\rho=\rho_{0}\left(1-\frac{\Delta p}{B}\right)^{-1} \simeq \rho_{0}\left(1+\frac{\Delta p}{B}\right)
$$

Specific Weight (w):

- It is defined as the weight per unit volume.
- Specific weight $=\frac{\text { Weight }}{\text { Volume }}=\frac{m . g}{\text { Volume }}=\rho . g$

Specific Gravity or Relative Density (s):

- It is the ratio of specific weight of fluid to the specific weight of a standard fluid. Standard fluid is water in case of liquid and H_{2} or air in case of gas.

$$
s=\frac{\gamma}{\gamma_{w}}=\frac{\rho \cdot g}{\rho_{w .} g}=\frac{\rho}{\rho_{w}}
$$

Where, $\gamma_{w}=$ Specific weight of water, and $\rho_{w}=$ Density of water specific.

Specific Volume (v):

Specific volume of liquid is defined as volume per unit mass. It is also defined as the reciprocal of specific density.

- Specific volume $=\frac{V}{m}=\frac{1}{\rho}$

Inertial force per unit area $=\frac{d p / d t}{A}=\frac{v(d m / d t)}{A}=\frac{v A v \rho}{A}=v^{2} \rho$

gradeup

Civil ENGINEERING - FLUID MECHANICS

Viscous force per unit area: $F / A=\frac{\eta v}{r}$
Reynold's number: $N_{R}=\frac{\text { Inertial force per unit area }}{\text { Viscous force per unit area }}=\frac{v^{2} \rho}{\eta v / r}=\frac{v \rho r}{\eta}$
Pascal's Law: $p_{x}=p_{y}=p_{z}$; where, p_{x}, p_{y} and p_{z} are the pressure at point $\mathrm{x}, \mathrm{y}, \mathrm{Z}$ respectively.

Hydrostatic Law:

- $\frac{\partial p}{\partial z}=p g$ or $d p=p g d z$
- $\int_{o}^{p} d p=p g \int_{o}^{h} d z$
- $\quad p=p g h$ and $h=\frac{p}{p g}$; where, h is known as pressure head.

Pressure Energy	Potential energy	Kinetic energy
It is the energy possessed by a liquid by virtue of its pressure. It is the measure of work done in pushing the liquid against pressure without imparting any velocity to it.	It is the energy possessed by liquid by virtue of its height or position above the surface of earth or any reference level taken as zerolevel.	It is the energy possessed by a liquid by virtue of its motion or velocity.
Pressure energy of the liquid $P V$	Potential energy of the liquid $m g h$	Kinetic energy of the liquid mv 2
Pressure energy per unit mass of the liquid P / ρ	Potential energy per unit mass of the liquid $g h$	Kinetic energy per unit mass of the liquid $v^{2} / 2$
Pressure energy per unit volume of the liquid P	Potential energy per unit volume of the liquid $\rho g h$	Kinetic energy per unit volume of the liquid $\rho v^{2} / 2$

Quantities that Satisfy a Balance Equation							
Quantit y	mass	x momentum	y momentum	z momentum	Energy	Species	
Φ	m	mu	mv	mw	$\mathrm{E}+\mathrm{mV}^{2} / 2$	$\mathrm{~m}^{(\mathrm{K})}$	
ϕ	1	u	v	w	$\mathrm{e}+\mathbf{V}^{2} / 2$	$\mathrm{~W}^{(\mathrm{K})}$	

In this table, u, v, and w are the x, y and z velocity components, E is the total thermodynamic internal energy, e is the thermodynamic internal energy per unit mass, and $\mathrm{m}^{(\mathrm{K})}$ is the mass of a chemical species, $\mathrm{K}, \mathrm{W}^{(\mathrm{K})}$ is the mass fraction of species K .

The other energy term, $\mathrm{m} \mathbf{V}^{2} / 2$, is the kinetic energy.

- Storage $=\frac{\partial \Phi}{\partial t}=\frac{\partial(m \varphi)}{\partial t}=\frac{\partial(\rho \Delta x \Delta y \Delta z \varphi)}{\partial t}=\frac{\partial(\rho \varphi)}{\partial t} \Delta x \Delta y \Delta z$
- Inflow $=\left.\rho u \varphi\right|_{x} \Delta y \Delta z+\left.\rho v \varphi\right|_{y} \Delta x \Delta z+\left.\rho w \varphi\right|_{z} \Delta y \Delta x$
- Outflow $=\left.\rho u \varphi\right|_{x+\Delta x} \Delta y \Delta z+\left.\rho v \varphi\right|_{y+\Delta y} \Delta x \Delta z+\left.\rho w \varphi\right|_{z+\Delta z} \Delta y \Delta x$
- Source $=S_{\varphi} \Delta x \Delta y \Delta z$
- $\frac{\partial \rho \varphi}{\partial t}+\frac{\left.\rho u \varphi\right|_{x+\Delta x}-\left.\rho u \varphi\right|_{x}}{\Delta x}+\frac{\left.\rho v \varphi\right|_{y+\Delta y}-\left.\rho v \varphi\right|_{y}}{\Delta y}+\frac{\left.\rho w \varphi\right|_{z+\Delta z}-\left.\rho w \varphi\right|_{z}}{\Delta z}=\boldsymbol{S}_{\varphi}$
- $\frac{\partial \rho \varphi}{\partial t}+\frac{\partial \rho u \varphi}{\partial x}+\frac{\partial \rho v \varphi}{\partial y}+\frac{\partial \rho w \varphi}{\partial z}=S_{\varphi}^{*}$
- $\mathrm{S}_{\varphi}^{*}=\stackrel{{ }_{\Delta x \Delta y \Delta z \rightarrow 0}}{\operatorname{Lim}} S_{\varphi}$

The Mass Balance Equations:

- $\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{i}}{\partial x_{i}}=0$
- $\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}=0$
- $\frac{\partial \rho}{\partial t}+u_{i} \frac{\partial \rho}{\partial x_{i}}+\rho \frac{\partial u_{i}}{\partial x_{i}}=0$
- $\frac{\partial \rho}{\partial t}+\rho\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right]+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}=0$
- $\frac{D \Psi}{D t}=\frac{\partial \Psi}{\partial t}+u \frac{\partial \Psi}{\partial x}+v \frac{\partial \Psi}{\partial y}+w \frac{\partial \Psi}{\partial z} \quad$ or $\quad \frac{D \Psi}{D t}=\frac{\partial \Psi}{\partial t}+u_{i} \frac{\partial \Psi}{\partial x_{i}}$
$\frac{D \rho}{D t}+\rho\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right]=0 \quad \frac{D \rho}{D t}+\rho \frac{\partial u_{i}}{\partial x_{i}}=0 \quad \frac{D \rho}{D t}+\rho \Delta=0$
- $\Delta \equiv \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$ or $\quad \Delta \equiv \frac{\partial u_{i}}{\partial x_{i}}=0$
- $\rho \frac{\partial \varphi}{\partial t}+\varphi\left[\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{i}}{\partial x_{i}}\right]+\rho u_{i} \frac{\partial \varphi}{\partial x_{i}}=\mathrm{S}_{\varphi}$
- $\rho \frac{\partial \varphi}{\partial t}+\rho u_{i} \frac{\partial \varphi}{\partial x_{i}}=\mathrm{S}_{\varphi}$

Momentum Balance Equation:

- Net j-direction sourceterm $=\frac{\partial \sigma_{1 j}}{\partial x_{1}}+\frac{\partial \sigma_{2 j}}{\partial x_{2}}+\frac{\partial \sigma_{3 j}}{\partial x_{3}}+\rho B_{j}=\frac{\partial \sigma_{i j}}{\partial x_{i}}+\rho B_{j}$
- $\frac{\partial \rho u_{j}}{\partial t}+\frac{\partial \rho u_{i} u_{j}}{\partial x_{i}}=\frac{\partial \sigma_{i j}}{\partial x_{i}}+\rho B_{j} \quad j=1, \ldots 3$
- For a Newtonian fluid, the stress, σ_{ij}, is given by the following equation:

$$
\sigma_{i j}=-P \delta_{i j}+\mu\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right]+\left(\kappa-\frac{2}{3} \mu\right) \Delta \delta_{i j}
$$

- $\frac{\partial \rho u_{j}}{\partial t}+\frac{\partial \rho u_{i} u_{j}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left[-P \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(\kappa-\frac{2}{3} \mu\right) \Delta \delta_{i j}\right]+\rho B_{j} \quad j=1, \ldots 3$
- $\frac{\partial \rho u_{j}}{\partial t}+\frac{\partial \rho u_{i} u_{j}}{\partial x_{i}}=-\frac{\partial P}{\partial x_{j}}+\frac{\partial}{\partial x_{i}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right]+\frac{\partial}{\partial x_{j}}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{j} \quad j=1, \ldots 3$
- $\frac{\partial \rho u}{\partial t}+\frac{\partial \rho u u}{\partial x}+\frac{\partial \rho v u}{\partial y}+\frac{\partial w u}{\partial z}=\rho B_{x}$
- $-\frac{\partial P}{\partial x}+2 \frac{\partial}{\partial x} \mu\left(\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right]+\frac{\partial}{\partial x}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]$

Energy Balance Equation:

- This directional heat flux is given the symbol $\mathrm{q}_{\mathrm{i}}: q_{i}=-k \frac{\partial T}{\partial x_{i}}$
$\frac{\text { Net xDirectionheat }}{\text { Unit Volume }}=-\frac{\left.q_{x}\right|_{x+\Delta x}-\left.q_{x}\right|_{x}}{\Delta x \Delta y \Delta z} \Delta y \Delta z=-\frac{\left.q_{x}\right|_{x+\Delta x}-\left.q_{x}\right|_{x}}{\Delta x}$
- Limit $\underset{\Delta x \rightarrow 0}{\text { Net } x \text { Directionheat source }}=-\frac{\partial q_{x}}{\partial x}$

gradeup

- Heat Rate $=-\frac{\partial q_{x}}{\partial x}-\frac{\partial q_{y}}{\partial y}-\frac{\partial q_{x}}{\partial x}=-\frac{\partial q_{i}}{\partial x_{i}}$
- Body-force work rate $=\rho\left(u B_{x}+v B_{y}+w B_{z}\right)=\rho u_{i} B_{i}$
- The work term on each face is given by the following equation:

$$
y \text {-face surface force work }=\left(u \sigma_{y x}+v \sigma_{y y}+w \sigma_{y z}\right) \Delta x \Delta z=u_{i} \sigma_{i y} \Delta x \Delta z
$$

- Net yFace Surface Force Work $=\frac{\partial\left(u \sigma_{y x}+v \sigma_{y y}+w \sigma_{y z}\right)}{\partial y}=\frac{\partial u_{i} \sigma_{y i}}{\partial y}$
- Net Surface Force Work $=\frac{\partial u_{i} \sigma_{x i}}{\partial x}+\frac{\partial u_{i} \sigma_{y i}}{\partial y}+\frac{\partial u_{i} \sigma_{z i}}{\partial z}=\frac{\partial u_{i} \sigma_{j i}}{\partial x_{j}}$
- Energy balance equation:

$$
\frac{\partial \rho\left(e+\mathbf{V}^{2} / 2\right)}{\partial t}+\frac{\partial \rho u_{i}\left(e+\mathbf{V}^{2} / 2\right)}{\partial x_{i}}=-\frac{\partial q_{i}}{\partial x_{i}}+\frac{\partial u_{i} \sigma_{j i}}{\partial x_{j}}+\rho u_{i} B_{i}
$$

Substitutions for Stresses and Heat Flux:

Using only the Fourier Law heat transfer, the source term involving the heat flux in the energy balance equation:

- $-\frac{\partial q_{i}}{\partial x_{i}}=-\frac{\partial}{\partial x_{i}}\left(-k \frac{\partial T}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}} k \frac{\partial T}{\partial x_{i}}=\frac{\partial}{\partial x} k \frac{\partial T}{\partial x}+\frac{\partial}{\partial y} k \frac{\partial T}{\partial y}+\frac{\partial}{\partial z} k \frac{\partial T}{\partial z}$
- $\frac{\partial \rho e}{\partial t}+\frac{\partial \rho u_{i} e}{\partial x_{i}}=\frac{\partial}{\partial x_{i j}} k \frac{\partial T_{T}}{\partial x_{i}}+\left[-P \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(\kappa-\frac{2}{3} \mu\right) \Delta \delta_{i j}\right] \frac{\partial u_{i}}{\partial x_{j}}$
- $\delta_{i j} \frac{\partial u_{i}}{\partial x_{j}}=\frac{\partial u_{j}}{\partial x_{j}}=\Delta$
- $\frac{\partial \rho e}{\partial t}+\frac{\partial \rho u_{i} e}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} k \frac{\partial T}{\partial x_{i}}-P \Delta+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \frac{\partial u_{i}}{\partial x_{j}}+\left(\kappa-\frac{2}{3} \mu\right) \Delta^{2}$

Dissipation to avoid confusion with the general quantity in a balance equation:

- $\boldsymbol{\Phi}_{D}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \frac{\partial u_{i}}{\partial x_{j}}+\left(\kappa-\frac{2}{3} \mu\right) \Delta^{2}$
- $\frac{\partial \rho e}{\partial t}+\frac{\partial \rho u_{i} e}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} k \frac{\partial T}{\partial x_{i}}-P \Delta+\boldsymbol{\Phi}_{D}$

The temperature gradient in the Fourier law conduction term may also be written as a gradient of enthalpy or internal energy:

- $\frac{\partial T}{\partial x_{i}}=\frac{1}{c_{v}} \frac{\partial e}{\partial x_{i}}+\frac{1}{c_{v}}\left[\frac{T \beta_{P}}{\kappa_{T}}-P\right] \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial x_{i}}$
- $\frac{\partial T}{\partial x_{i}}=\frac{1}{c_{p}} \frac{\partial h}{\partial x_{i}}-\frac{1-T \beta_{P}}{\rho c_{p}} \frac{\partial P}{\partial x_{i}}$
- $\frac{\partial \rho e}{\partial t}+\frac{\partial \rho u_{i} e}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} \frac{k}{c_{v}} \frac{\partial e}{\partial x_{i}}-P \Delta+\boldsymbol{\Phi}_{D}+\frac{\partial}{\partial x_{i}} \frac{1}{c_{v}}\left[\frac{T \beta_{P}}{\kappa_{T}}-P\right] \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial x_{i}}$
- $\frac{\partial \rho h}{\partial t}+\frac{\partial \rho u_{i} h}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} \frac{k}{c_{p}} \frac{\partial h}{\partial x_{i}}+\boldsymbol{\Phi}_{D}+\frac{\partial}{\partial x_{i}}\left[\frac{1-T \beta_{P}}{\rho c_{p}}\right] \frac{\partial P}{\partial x_{i}}+\frac{D P}{D t}$
- $c_{p}\left[\frac{\partial \rho T}{\partial t}+\frac{\partial \rho u_{i} T}{\partial x_{i}}\right]=\frac{\partial}{\partial x_{i}} k \frac{\partial T}{\partial x_{i}}+\boldsymbol{\Phi}_{D}+\beta_{P} T \frac{D P}{D t}$

General Balance Equations			
φ	c	$\Gamma^{(\varphi)}$	$\mathbf{S}^{(9)}$
1	1	0	0
$\mathrm{u}=\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{1}$	1	μ	$-\frac{\partial P}{\partial x}+\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial x}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial x}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial x}+\frac{\partial}{\partial x}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{x}$
$\mathrm{v}=\mathrm{u}_{\mathrm{y}}=\mathrm{u}_{2}$	1	μ	$-\frac{\partial P}{\partial y}+\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial y}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial y}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial y}+\frac{\partial}{\partial y}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{y}$
$\mathrm{w}=\mathrm{u}_{\mathrm{z}}=\mathrm{u}_{3}$	1	μ	$-\frac{\partial P}{\partial z}+\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial z}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial z}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial z}+\frac{\partial}{\partial z}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{z}$
e	1	k/c.v	$-P \Delta+\boldsymbol{\Phi}_{D}+\frac{\partial}{\partial x_{i}} \frac{1}{c_{v}}\left[\frac{T \beta_{P}}{\kappa_{T}}-P\right] \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial x_{i}}$
h	1	k/cp	$\boldsymbol{\Phi}_{\boldsymbol{D}}+\frac{\partial}{\partial x_{i}}\left[\frac{1-T \beta_{P}}{\rho c_{p}}\right] \frac{\partial P}{\partial x_{i}}+\frac{D P}{D t}$
T	c_{P}	k	$\boldsymbol{\Phi}_{D}+\beta_{p} T \frac{D P}{D t}$
T	c_{v}	k	$\boldsymbol{\Phi}_{D}+\frac{T \beta_{P}}{\kappa_{T}} \Delta$
$\mathrm{W}^{(\mathrm{K})}$	1	$\boldsymbol{\rho} \boldsymbol{D}_{\text {K,Mix }}$	$\cdots 1 \cdot \mathrm{r}^{(\mathrm{K})}$

Momentum equation:

- $\frac{\partial \rho u_{j}}{\partial t}+\frac{\partial \rho u_{i} u_{j}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} \mu \frac{\partial u_{j}}{\partial x_{i}}+S^{(j)}=-\frac{\partial P}{\partial x_{i}}+\frac{\partial}{\partial x_{i}} \mu \frac{\partial u_{j}}{\partial x_{i}}+S^{*(j)}$

| General Momentum Equations | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\varphi}$ | \mathbf{c} | $\boldsymbol{\Gamma}^{(\varphi)}$ | $\mathbf{S}^{*(\varphi)}$ |
| $\mathbf{1}$ | 1 | 0 | 0 |
| $\mathrm{u}=\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{1}$ | 1 | μ | $\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial x}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial x}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial x}+\frac{\partial}{\partial x}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{x}$ |
| $\mathrm{v}=\mathrm{u}_{\mathrm{y}}=\mathrm{u}_{2}$ | 1 | μ | $+\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial y}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial y}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial y}+\frac{\partial}{\partial y}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{y}$ |
| $\mathrm{w}=\mathrm{u}_{\mathrm{z}}=\mathrm{u}_{3}$ | 1 | μ | $\frac{\partial}{\partial x} \mu \frac{\partial u}{\partial z}+\frac{\partial}{\partial y} \mu \frac{\partial v}{\partial z}+\frac{\partial}{\partial z} \mu \frac{\partial w}{\partial z}+\frac{\partial}{\partial z}\left[\left(\kappa-\frac{2}{3} \mu\right) \Delta\right]+\rho B_{z}$ |

Bernoulli's Equation:

This equation has four variables: velocity (v), elevation (z), pressure (p), and density (ρ). It also has a constant (g), which is the acceleration due to gravity. Here is Bernoulli's equation:

- $\frac{v^{2}}{2}+g z+\frac{p}{\rho}=$ constant
- $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant
- $\frac{P}{\rho g}+h+\frac{v^{2}}{2 g}=$ constant; $\frac{P}{\rho g}$ is called pressure head, h is called gravitational head and $\frac{v^{2}}{2 g}$ is called velocity head.

Factors that influence head loss due to friction are:

- Length of the pipe (l)
- Effective diameter of the pipe $\left(D_{h}\right)$
- Velocity of the water in the pipe (v)
- Acceleration of gravity (g)
- Friction from the surface roughness of the pipe (λ)
- The head loss due to the pipe is estimated by the following equation:

$$
h_{f, \text { major }}=\lambda \frac{l v^{2}}{2 D_{h} g}
$$

- To estimate the total head loss in a piping system, one adds the head loss from the fittings and the pipe:

$$
h_{f, t o t a l}=\sum h_{f, \text { minor }}+\sum h_{f, \text { major }}
$$

- Note that the summation symbol (Σ) means to add up the losses from all the different sources. A less compact-way to write this equation is:

$$
\begin{gathered}
h_{f, \text { total }}=h_{f, \text { minor } 1}+h_{f, \text { minor } 2}+h_{f, \text { minor } 3}+\cdots \\
h_{f, \text { major } 1}+h_{f, \text { major } 2}+h_{f, \text { major } 3}+\cdots
\end{gathered}
$$

Combining Bernoulli's Equation With Head Loss:

$$
\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{f, \text { total }}
$$

Relation between coefficient of viscosity and temperature:

$$
\text { Andrade formula } \eta=\frac{A e^{C \rho / T}}{\rho^{-1 / 3}}
$$

Stoke's Law: $F=6 \pi \eta r v$

Terminal Velocity:

- Weight of the body $(W)=m g=($ volume \times density $) \times g=\frac{4}{3} \pi r^{3} \rho g$
- Upward thrust $(T)=$ weight of the fluid displaced

$$
\left.=(\text { volume } \times \text { density }) \text { of the fluid } \times g=\frac{4}{3} \pi r^{3} \sigma g\right)
$$

- Viscous force $(F)=6 \pi \eta r v$
- When the body attains terminal velocity the net force acting on the body is zero.
- $W-T-F=0$ or $F=W-T$
- $6 \pi \eta r v=\frac{4}{3} \pi r^{3} \rho g-\frac{4}{3} \pi r^{3} \sigma g=\frac{4}{3} \pi r^{3}(\rho-\sigma) g$
- Terminal velocity $v=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$
- Terminal velocity depend on the radius of the sphere so if radius is made n - fold, terminal velocity will become n^{2} times.
- Greater the density of solid greater will be the terminal velocity
- Greater the density and viscosity of the fluid lesser will be the terminal velocity.
- If $\rho>\sigma$ then terminal velocity will be positive and hence the spherical body will attain constant velocity in downward direction.
- If $\rho<\sigma$ then terminal velocity will be negative and hence the spherical body will attain constant velocity in upward direction.

Poiseuille's Formula:

- $V \propto \frac{P r^{4}}{\eta l}$ or $V=\frac{K P r^{4}}{\eta l}$
- $V=\frac{\pi P r^{4}}{8 \eta l}$; where $K=\frac{\pi}{8}$ is the constant of proportionality.

Buoyant Force:

- Buoyant force $=$ Weight of fluid displaced by body

gradeup

- Buoyant force on cylinder =Weight of fluid displaced by cylinder
- $V_{s_{i n}}=$ Value of immersed part of solid
- $\mathrm{F}_{\mathrm{B}}=p_{\text {water }} \times g \times$ Volume of fluid displaced
- $\mathrm{F}_{\mathrm{B}}=p_{\text {water }} \times g \times$ Volume of cylinder immersed inside the water
- $F_{B}=m g$
- $\mathrm{F}_{\mathrm{B}}=p_{w} g \frac{\pi}{4} d^{2} \quad(\because w=m g=p V g)$
- $V_{s_{\text {in }}} p l g=V_{s} p_{s} g$
- $p_{w} g \frac{\pi}{4} d^{2} x=p_{\text {cylinder }} g \frac{\pi}{4} d^{2} h$
- $p_{w} x=p_{\text {cylinder }} h$

Relation between B, G and M:

- $\mathrm{GM}=\frac{l}{V}-B G$; where $l=$ Least moment of inertia of plane of body at water surface, $\mathrm{G}=$ Centre of gravity, $B=$ Centre of buoyancy, and $M=$ Metacentre.
- $l=\min \left(l_{x x}, l_{y y}\right), \quad l_{x x}=\frac{b d^{3}}{12}, l_{y y}=\frac{b d^{3}}{12}$
- $V=b d x$

Energy Equations:

- $F_{\text {net }}=F_{g}+F_{p}+F_{v}+F_{c}+F_{t}$; where Gravity force F_{g}, Pressure force F_{p}, Viscous force F_{v}, Compressibility force F_{c}, and Turbulent force F_{t}.
- If fluid is incompressible, then $\mathrm{F}_{\mathrm{c}}=0$
$\therefore F_{\text {net }}=F_{g}+F_{p}+F_{v}+F_{t}$; This is known as Reynolds equation of motion.
- If fluid is incompressible and turbulence is negligible, then

$$
F_{c}=0, F_{t}=0 \therefore F_{\text {net }}=F_{g}+F_{p}+F_{v} ; \text { This equation is called as Navier-Stokes equation. }
$$

- If fluid flow is considered ideal then, viscous effect will also be negligible. Then

$$
F_{n e t}=F_{g}+F_{p} \text {; This equation is known as Euler's equation. }
$$

- Euler's equation can be written as: $\frac{d p}{\rho}+g d z+v d v=0$

Dimensional analysis:

Quantity	Symbol	Dimensions
Mass	m	M
Length	1	
Time	t	T
Temperature	T	θ
Velocity	u	LT^{-1}
Acceleration	a	LT^{-2}
Momentum/Impulse	mv	MLT ${ }^{-1}$
Force	F	MLT ${ }^{-2}$
Energy - Work	W	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Power	P	$\mathrm{ML}^{2} \mathrm{~T}^{-3}$
Moment of Force	M	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Angular momentum	- ${ }^{\circ}$	$\mathrm{ML}^{2} \mathrm{~T}^{-1}$
Angle	η	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Angular Velocity		T^{-1}
Angular acceleration	α	T^{-2}
Area	A	L^{2}
Volume	V	L^{3}
First Moment of Area	Ar	L^{3}
Second Moment of Area	I	L^{4}
Density	ρ	ML ${ }^{-3}$
Specific heatConstant Pressure	C_{p}	$\mathrm{L}^{2} \mathrm{~T}^{-2} \theta^{-1}$
Elastic Modulus	E	$\mathbf{M L}{ }^{-1} \mathbf{T}^{-2}$
Flexural Rigidity	EI	$\mathrm{ML}^{3} \mathrm{~T}^{-2}$
Shear Modulus	G	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Torsional rigidity	GJ	$\mathrm{ML}^{3} \mathrm{~T}^{-2}$
Stiffness	k	MT ${ }^{-2}$

gradeup

Angular stiffness	T / η	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Flexibiity	$1 / \mathrm{k}$	$\mathrm{M}^{-1} \mathrm{~T}^{2}$
Vorticity	-	T^{-1}
Circulation	-	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
Viscosity	μ	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
Kinematic Viscosity	τ	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
Diffusivity	-	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
Friction coefficient	f / μ	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Restitution coefficient	C	$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Specific heat- Constant volume		$\mathrm{L}^{2} \mathrm{~T}^{-2} \theta^{-1}$

Boundary layer:

- \quad Reynolds number $=\frac{\rho v \cdot x}{\mu}(\operatorname{Re})_{x}=\frac{v \cdot x}{v}$
- Displacement Thickness $\left(\delta^{*}\right): \delta^{*}=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y$
- Momentum Thickness $(\theta): \theta=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y$
- Energy Thickness $\left(\delta^{* *}\right): \delta=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u^{2}}{U^{2}}\right) d y$
- Boundary Conditions for the Velocity Profile: Boundary conditions are as
○
(a) At $y=0, u=0, \frac{d u}{d y} \neq 0$;
(b) At $y=\delta, u=U, \frac{d u}{d y}=0$

Turbulent flow:

- Shear stress in turbulent flow: $\tau=\tau_{v}+\tau_{t}=\mu \frac{d \bar{u}}{d y}+\eta \frac{d \bar{u}}{d y}$

Turbulent shear stress by Reynold: $\quad \tau=\rho u^{\prime} v^{\prime}$
Shear stress in turbulent flow due to Prndtle : $\tau=\rho l^{2}\left(\frac{d u}{d y}\right)^{2}$

Download GradeUP from the Google Play Store
 Get Daily Quizzes, Notifications,
 Resources, Tips and Strategy

GET IT ON
 Google play

www.gradestack.com/gate-exam

