Solutions

General Aptitude

1. Ans. C.

The ninth and the tenth of this month are Monday and Tuesday respectively.
2. Ans. D.

Given
$A+x_{2}=83$
$A+y_{2}=63$
$A+x_{3}=217$
And
$x_{1}+x_{2}+A+x_{3}=329$
$x_{2}+A+y_{1}+y_{2}=186$
$x_{3}+A+y_{2}+z_{1}=295$
$x_{1}+x_{2}+x_{3}+y_{1}+y_{2}+z_{1}+A=500$
$(1)+(2)+(3) \Rightarrow x_{1}+y_{2}+x_{3}=363-3 A-$ (8)
$(4)+(5)+(6) \Rightarrow 3 A+2(363-3 A)+$
$\left(x_{1}+y_{1}+z_{1}\right)=810$
$\Rightarrow 3 A+2(363-3 A) Z+\left(x_{1}+y_{1}+z_{1}\right)=810--$
$\Rightarrow-3 A+726+\left(500-x_{2}-x_{3}-y_{1}-A\right)=810$
$\Rightarrow-3 A+726+500(363-3 A)-A)=810$
$\Rightarrow 863-A=810 \Rightarrow A=53$
Alternate method
$n(C)=329 . n(P)=186$,
$n(M)=295, n(C \cap P)=83$;
$n(C \cap M)=217 .(P \cap M)=63$
$n(P \cup C \cup M)=n(C)+n(P)+n(M)$
$-n(C \cap P)-n(P \cap M)$
$+n(P \cap C \cap M)$
$\Rightarrow 500=329+186+$

$$
295-83-217+n(P \cap C \cap m)
$$

$\Rightarrow n(P \cap C \cap m)=500-447=53$
3. Ans. A.

It is easier to read this year's textbook than the last year's.
4. Ans. A.

The required distance
$F P=x=\sqrt{100-36}=\sqrt{64}$
$x=8$, East
5. Ans. B.

For rules to be followed, we need to check P's drink and S's age.
6. Ans. D.

Correct answer is D
7. Ans. C.

Total no. of 3 digit no's $=\underline{9} 1010=900$
The no. of 3 -digit numbers in which ' 1 ' is to the immediate right of $2=19$
8. Ans. B.

Closer lines represents steepest path

Alternate method

The steepest path will be the path which is deepest from sea level. So, P to R is the steepest path.
9. Ans. C.

Given 1200 Men +500 Women can build a bridge in 2 weeks. And
900 Men +250 Women will take 3 weeks to build the same bridge
\therefore To complete in a week; there are 2400 Men +1000 W required in the first equation and 2700 Men +750 Women required in the second equation.
$\therefore 2400 \mathrm{M}+1000 \mathrm{~W}=2700 \mathrm{M}+750 \mathrm{~W} \Rightarrow 1 W=\frac{6 M}{5}$
\therefore The no. of men required to build the bridge in one week
$=2400 M+1000\left(\frac{6 M}{5}\right)=3600 M e n$
Alternate method
Let a man can build the bridge in x weeks and a woman can build the bridge in y weeks.
So, $\frac{120}{x}+\frac{500}{y}=1 / 2 \quad \frac{900}{x}+\frac{250}{y}=1 / 3$
Byequations i and ii ; weget
x 3600; y 3000
\Rightarrow A man builds the bridge in 3600 weeks
\Rightarrow Required men 3600 to build in a week.
10. Ans. A.

Correct answer would be A

Electronics \& Communications

1. Ans. B.
$\operatorname{Exp}: F=\overline{\mathrm{x}} \mathrm{y} \overline{\mathrm{z}}+z(\overline{\overline{\mathrm{x}} \mathrm{y}})$
$F=\overline{\mathrm{x}} \mathrm{y} \overline{\mathrm{z}}+(x+\overline{\mathrm{y}}) z$
$F=\bar{x} y \bar{z}+x z+\bar{y} z$

2. Ans. C.
$h[n]=5 \delta[n]-7 \delta[n-1]+7 \delta[n-3]-5 \delta[n-4]$ Obtain
$h\left[e^{j \omega}\right]=5-7 e^{-j \omega}+7 e^{-3 j \omega}-5^{-4 j \omega}$
At $\omega=0$ and $\frac{\pi}{2} ; \quad h\left[e^{j \omega}\right]=0$
For $0<\omega<\frac{\pi}{2}$ at a frequency ω_{o} maximum value of $h\left[e^{j \omega}\right]$ is obtained

3. Ans. A.

If I \& V are in phase then the circuit is in resonance.
At resonance
$\left|\frac{V_{C}}{V_{R}}\right|=Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{5} \sqrt{\frac{5}{5}}=0.2$
4. Ans. B.

In a DRAM information is stored in a capacitor.
5. Ans. A.

Here, $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{PH}}$, so n-channel MOSFET is working in linear region.

$$
I_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T H}\right) \cdot V_{D S}-\frac{V_{D S}^{2}}{2}\right]
$$

So, transconductance $g_{i n}$ is in linear region and is given by

$$
\begin{aligned}
& g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{V_{D S}=c o n s t} \\
& =\left(\mu_{n} C_{o x}\right) \frac{W}{L} \cdot V_{D S}=100 \times 10^{-6} \times 50 \times 0.1
\end{aligned}
$$

$$
=5 \times 10^{-4}=0.5 \mathrm{~mA} / V
$$

6. Ans. C.
\Rightarrow two spheres are joined with a conducting wire, the voltage on two spheres is same.
$\Rightarrow V_{a}=V_{b} \Rightarrow$ The capacitance of sphere \propto radius
$\frac{C_{a}}{C_{b}}=\frac{a}{b}$
We know $\mathrm{Q}=\mathrm{CV}$
$\frac{Q_{a}}{Q_{b}}=\frac{C_{a}}{C_{b}}=\frac{a}{b}$
$\frac{E_{a}}{E_{b}}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{a}{a^{2}}}{\frac{1}{4 \pi \varepsilon_{0}} \frac{b}{b^{2}}}=\frac{a}{b}>1$
$E_{a}>E_{b}$
7. Ans. B.
logic implemented by the circuit is XOR.
8. Ans. C.

If channel length modulation is considered and significant it means $\lambda \neq 0$
$\mathrm{V}_{\mathrm{A}}($ early voltage $)=\frac{1}{\lambda}$ and $r_{e}=\frac{V_{A}}{I_{D}}$

If $V_{A S}>V_{T H}$ and $V_{D S}>\left(V_{D S}-V_{T H}\right)$ then it indicates that MOSFET is working in saturation region and it can be used as an amplifier. So it can act as current source with finite output impedance.
9. Ans. A.

The maximum resistance

The minimum resistance

$\frac{R_{\max }}{R_{\min }}=2.14$
10. Ans. C.

If the reverse bias voltage across the base collector junction is increased, then their effective base width will decrease and collector current will increase, therefore their common-emitter current gain increases.

11. Ans. A.

$$
\begin{array}{ll}
\therefore & ---(1) \\
\therefore & x_{2}(t)+45 u(t) \tag{2}
\end{array}
$$

Apply L.T to above equation $x_{1}(t)=0$ [Because initial conditions are zero]
$S x_{2}(s)-x_{2}(0)=-9 X_{2}(s)+\frac{45}{S}$
$X_{2}(s)[s+9]=\frac{45}{3}$
$X_{2}(s)=\frac{45}{s(s+9)}$
$X_{2}(s)=\frac{S}{5}-\frac{5}{s+9}$
$X_{2}(t)=5 u(t)-5 e^{-9 t} u(t)$
$\underset{t \rightarrow \infty}{\operatorname{It}}\left|\sqrt{x_{1}^{2}(t)+x_{2}^{2}}(t)\right|=\underset{t \rightarrow \infty}{\operatorname{It}}\left|x_{2}(t)\right|=5$
12. Ans. B.
$\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$

$R_{4} \rightarrow R_{4}+R_{1} \sim$ | $\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| $R_{4} \rightarrow R_{4}+R_{3} \sim$ | | 1 | -1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | -1 | 0 |
| | $\left[\begin{array}{ccccc}0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$ | | | |

$R_{2} \leftrightarrow R_{3} \sim \sim\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -1\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right]} \\
& R_{4} \rightarrow R_{4}+R_{3} \sim\left[\begin{array}{ccccc}
1 & -1 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right]} \\
& R_{5} \rightarrow R_{5}+R_{4} \\
& {\left[\begin{array}{ccccc}
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Which is in Echelon form \Rightarrow Rank $=$ No. of non-zero rows= 4
13. Ans. B.

Percentage of power reflected is $=|\Gamma|^{2} \times 100$
$|\Gamma|=\frac{V S W R-1}{V S W R+1}=\frac{5.8-1}{5.8+1}=\frac{4.8}{6.8}=0.7058$
\% Power reflected $=|\Gamma|^{2} \times 100=49.82 \%$
14. Ans. B.

Given Input-output relationship describes integration over a fundamental period T . The integration over one period is linear and time-invariant.
15. Ans. D.

The phase-lead controller adds zero and a pole, with the zero to the right of the pole, to the forward-path transfer function. The general effect is to add more damping to the closed-loop system. The rise time and settling time are reduced in general.
\rightarrow Reduces the steady state error
\rightarrow Reduces the speed of response (i.e. ζ
decreases)
\rightarrow Increases the gain of original network without affecting stability
\rightarrow Permits the increases of gain if phase margin is acceptable
\rightarrow System becomes lesser stable
\rightarrow Reduces the effect of noise
\rightarrow Decrease the bandwidth
16. Ans. B.
$Z=4$ is a pole of order ' 1 ' (or) simple pole
Residue of $f(z)$ at $z=4=\operatorname{Res} f(z)=$
$\lim _{z \rightarrow 4}\left[(z-4) \cdot \frac{1}{(z-4)(z+1)^{3}}\right]=\frac{1}{5^{3}}=\frac{1}{125}$ and
$Z=-1$ is a pole of order ' 3 '.
Res $\underset{z=-1}{f}(z)=\frac{1}{(3-1)!}$
$\lim _{z \rightarrow-1}\left\{\frac{d^{2}}{d z^{2}}\left[(z+1)^{3} \cdot \frac{1}{(z-4)(z+1)^{3}}\right]\right\}$
$=\frac{1}{2} \lim _{z \rightarrow-1}\left[\frac{d^{2}}{d z^{2}}\left(\frac{1}{z-4}\right)\right]=-\frac{1}{125}$
17. Ans. D.

For sinusoidal signal
$(S N R)_{Q}$ in dB $=6.0 \mathrm{n}+1.75$
Given required $(S N R)_{Q}=40 \mathrm{~dB}$
$\Rightarrow 6.0 \mathrm{n}+1.75 \geq 40 \mathrm{~dB}$
$\Rightarrow 6.0 \mathrm{n} \geq 40-11.75$
$\Rightarrow n \geq \frac{40-11.75}{6.02}$
$\Rightarrow n=7$ (Since ' n ' must be an integer)
18. Ans. A.
$D^{2}+2 D-5=0$
$\Rightarrow D=-1 \pm \sqrt{6}$ (roots are real and distinct)
$\Rightarrow y=k_{1} \cdot e^{(-1+\sqrt{6}) x}+k_{2} e^{(-1-\sqrt{6) x}}$
Where k1, k2 are arbitrary constants.
19. Ans. C.

For memory less binary Symmetric channel Channel capacity
$\mathrm{C}=1-\mathrm{H}(\mathrm{p})$
$\mathrm{H}(\mathrm{p})=p \log _{2} \frac{1}{p}+(1-p) \log _{2}\left(\frac{1}{1+p}\right)$
$\mathrm{p} \rightarrow$ Cross over probability
$\Rightarrow C=1+p \log _{2} p+(1-p) \log _{2}(1-p)$
At $\mathrm{p}=0 ; \mathrm{C}=1$
At $p=1 ; C=1$
At $\mathrm{p}=\frac{1}{2} \mathrm{C}=0$
20. Ans. A.
$V_{0}=\frac{V_{m}}{\pi}=\frac{10}{\pi}=3.1847 \mathrm{~V}$
21. Ans. A.

Given $\mathrm{x}(\mathrm{t})=\mathrm{U}+\mathrm{Vt}$
$\mathrm{X}(2)=\mathrm{U}+2 \mathrm{~V}$
$\mathrm{E}[\mathrm{x}(2)]=\mathrm{E}[\mathrm{U}+2 \mathrm{~V}]=\mathrm{E}[\mathrm{U}]+2 \mathrm{E}[\mathrm{V}]=0+2 \times 1=2$
22. Ans. A.

$\frac{Y(s)}{X(s)}=\frac{2+1}{1+2}=1$
23. Ans. A.
$x+y+2=1$
$2 x-y+2 z=0$
We have angle between two planes
$a_{1} x+b_{1} y+c_{1} y+d_{1}=0$
$a_{x} x+b_{2} y+c_{2} y+d_{2}=0$
Is
$\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$\Rightarrow \cos \theta=\frac{|2-1+2|}{\sqrt{1+1+1} \sqrt{4+1+4}}=\frac{3}{\sqrt{3 \sqrt{9}}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta \cong 54.73$
24. Ans. A.

Given $\mathrm{V}_{\mathrm{BE}}=0.8 \mathrm{~V} ; \mathrm{a}=1$
As $a=1 ; \beta$ is very large
So, $\mathrm{I}_{\mathrm{E}} \simeq \mathrm{I}_{\mathrm{C}}$
$V_{B}=\frac{18 \times 16}{60}=4.8 \mathrm{~V}$
$I_{C}=\frac{4.8-08}{2 \times 10^{3}}=2 \mathrm{~mA}$
$V_{C E}=18-6 \times 10^{3} \times 2 \times 10^{-3}$
$=18-12=6 \mathrm{~V}$
25. Ans. A.

When $\mathrm{V}_{\mathrm{i}}=14 \mathrm{~V}$, the equivalent circuit is

$V_{i}=V_{c}+V_{0}$
$V_{C}=V_{i}-V_{0}$
$V_{C}=14-(6.8+0.7)=14-7.5=6.5 \mathrm{~V}$
Maximum $\mathrm{V}_{0}=7.5 \mathrm{~V}$
When $V_{i}=-14 V$, the equivalent circuit is

$V_{0}=V_{i}-V_{c}=-14 V-6.5=-20.5 V$
Minimum $V_{0}=-20.5 \mathrm{~V}$
26. Ans. B.
curl $\vec{i}-v$
$\left.\Rightarrow \begin{array}{cccc} & i & j & k \\ & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array} \right\rvert\,=0$

$$
3 y-k_{1} z \quad k_{2} x-2 z \quad-k_{3} y-z
$$

$\Rightarrow \bar{i}\left(-k_{3}+2\right)-\bar{j}\left(0+k_{1}\right)+\bar{k}\left(k_{2}-3\right)=0$
$\Rightarrow k_{1}=0, k_{2}=3, k_{3}=2$
27. Ans. A.

Total power when $\mu=50 \%$ is
$P_{T}=P_{c}\left[1+\frac{\mu^{2}}{2}\right]$
$P_{T}=5\left[1+\frac{(0.5)^{2}}{2}\right]=5[1+0.125]=5[1.125]$
$P_{T}=5.625$
When $\mu=40 \%$
Total power remains $5.625 \Rightarrow 5.625=P_{c}\left[1+\frac{(0.4)^{2}}{2}\right]$

$$
\Rightarrow 5.625=P_{C}[1+0.08]
$$

$P_{C}=5.22$
28. Ans. A.

Consider an LTI system with magnitude response
$|H(f)|=\left\{\begin{array}{cc}1-\frac{|f|}{20} & |f| \leq 20 \\ 0 & |f|>20\end{array}\right\}$
And phase response $\operatorname{Arg}\{H(f)\}=-2 f$.
If the input to the system is
$x(t)=8 \cos \left(20 \pi t+\frac{\pi}{4}\right)+16 \sin \left(40 \pi t+\frac{\pi}{8}\right)+24 \cos \left(80 \pi t+\frac{\pi}{16}\right)$
Then the average power of the output signal $y(t)$ is $\overline{\text { Obtain } X(\mathrm{f})}$ for the given $\mathrm{x}(\mathrm{t})$

$$
\begin{aligned}
& |X(f)|=4[\delta(f-10)+\delta(f+10)] \\
& \quad+8[\delta(f-20)-\delta(f+20)] \\
& 12[\delta(f-40)+\delta(f+40)]
\end{aligned}
$$

$\therefore\left||Y(f)|=\frac{4}{2}[\delta(f-10)+\delta(f+10)]\right.$

$$
\begin{aligned}
& =\left[\frac{1}{2}(\delta(f-10)+\delta(f+10))\right] \\
& y(t)=4 \cos 2 \pi t
\end{aligned}
$$

Thus, max power is $=\frac{16}{2}=8$
29. Ans. A.

$$
\begin{aligned}
& V_{F B}=\phi_{M S}=\frac{Q_{F}}{C_{o x}} \\
& q \phi_{M S}=q \phi_{M}-q \phi_{s} \\
& =q \phi_{M}-q_{x o}\left(E_{c}-E_{f}\right)=4.1-4.0-0.9=-0.8 \mathrm{eV} \\
& \phi_{M S}=\frac{-0.8 \times q \times 1 \mathrm{~V}}{q}=-0.8 \mathrm{~V} \\
& C_{o x}=\frac{E_{o x}}{t_{o x}}=34.5 \times 10^{-9} \mathrm{~F} / \mathrm{cm}^{2} \\
& -1=-0.8-\frac{Q_{F}}{34.5 \times 10^{-9}} F / \mathrm{cm}^{2} \\
& -1=0.8-\frac{Q_{F}}{34.5 \times 10^{-9}} \\
& -0.2=-\frac{Q_{F}}{34.5 \times 10^{-9}} \\
& Q_{F}=6.9 n c / \mathrm{cm}^{2}
\end{aligned}
$$

30. Ans. A.

Work done due to field and external agent must be zero

$$
\begin{aligned}
& \mathrm{qV}=\frac{1}{2} M V^{2} \Rightarrow-16 \times 10^{-19} \times \frac{1.6 \times 10^{-19}}{4 \pi \varepsilon_{0} \gamma}=\frac{1}{2} m \times\left(10^{5}\right)^{2} \\
& \Rightarrow \gamma=5.058 \times 10^{-8} \mathrm{~m}
\end{aligned}
$$

31. Ans. C.

To find $\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x$
Consider $\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y=x \int_{0}^{1} \frac{1}{(x+y)^{3}} d y-\int_{0}^{1} \frac{y}{(x+y)^{3}} d y$
$=\left.\frac{x \cdot(x+y)^{-3+1}}{-3+1}\right|_{0} ^{1}-\int_{0}^{1} \frac{(x+y)-x}{(x+y)^{3}} d y$
$=\frac{-x}{2}\left[\frac{1}{(x+1)^{2}}-\frac{1}{x^{2}}\right]-\int_{0}^{1} \frac{1}{(x+y)^{2}} d y$
$+x \int_{0}^{1} \frac{1}{(x+y)^{3}} d y$
$=-\frac{-x}{2}\left[\frac{1}{(x+1)^{2}}-\frac{1}{x^{2}}\right]-\left.\frac{(x+y)^{-2+1}}{-2+1}\right|_{0} ^{1}$
$-\frac{x}{2}\left[\frac{1}{(x+1)^{2}}-\frac{1}{x^{2}}\right]$
$=-x\left(\frac{1}{(x+1)^{2}}-\frac{1}{x^{2}}\right)+\frac{1}{x+1}-\frac{1}{x}$
$=\frac{1}{(x+1)^{2}}$
$\therefore \int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x=\int_{0}^{1}\left(\frac{1}{(x+1)^{2}}\right) d x=\left.\frac{-1}{x+1}\right|_{0} ^{1}$
$=\frac{1}{2}$
Similarly, $\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x\right) d y=-\frac{1}{2}$
32. Ans. A.

Let ' X ' is a random variable which takes number of attempts
Given probability of any attempts to be successful,
$p=40 \%=\frac{40}{100}=\frac{2}{5}, q=1-\frac{2}{5}=\frac{3}{5}$

x	1	2	3	4
P(X)	$\frac{2}{5}$	$\left(\frac{3}{5}\right) \times\left(\frac{2}{5}\right)$	$\left(\frac{3}{\frac{3}{5} \times \frac{3}{5}}\right) \times\left(\frac{2}{5}\right)$	$\binom{\frac{3}{4} \times \frac{3}{5} \times \frac{3}{5}}{5} \times\left(\frac{2}{5}\right)$

$\sum(X)=\sum X_{p}(X)=\left(1 \times \frac{2}{5}\right)+2\left(\frac{3}{5} \times \frac{2}{5}\right)+$
$3\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right)+4\left(\frac{3}{5}\right)^{3}\left(\frac{2}{5}\right)+$
$=\frac{2}{5}\left[1+2\left(\frac{3}{5}\right)+3\left(\frac{3}{5}\right)^{2}+4\left(\frac{3}{5}\right)^{3}+\ldots ..\right]$
$=\frac{2}{5}\left[1-\frac{3}{5}\right]^{-2} \ldots \ldots .\left(\because \quad=1+2 x+3 x^{2}+4 x^{3}+\ldots\right)$
$=\frac{2}{5} \times \frac{25}{4}=2.5$
\therefore Average number of attempts that passengers need to make to get seat reserved is ' 2.5^{\prime}

33. Ans. B.

The output of the ripple carry adder will be stable at t is 70ns
34. Ans. A.
$\theta_{c}=\sin ^{-1}\left(\sqrt{\frac{\varepsilon_{\gamma^{2}}}{\varepsilon_{\gamma 1}}}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{1.75}}\right)=49.106$
$\Rightarrow \tan \theta_{c}=\frac{5}{d} \Rightarrow d=\frac{5}{\tan \theta_{c}}=4.33 \mathrm{~m}$
35. Ans. C.
$\mathrm{N}=0$, Because $0<\mathrm{L}<1$
There are no encircles around ($\mathrm{Y}, 0$)
And

$$
\begin{aligned}
& G(S)=\frac{10 K(S+2)}{S^{3}+3 S^{2}+10} \\
& =\frac{10 K(S+2)}{(S+3.72)[S-(0.31 \pm 1.598 i)]}
\end{aligned}
$$

So, $P=2$
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$Z=2$
OR $C . E=S^{3}+3 S^{2}+10 K S+20 K+10$
If stable $30 \mathrm{~K}>20 \mathrm{~K}+10$
K>1
Here, in the question asking $0<K<1$
So, System is unstable
36. Ans. B.

Given input signal $x(t)=\sin (1400 \pi t)$
Input signal spectrum

Sampled signal spectrum is the spectrum of $\mathrm{X}(\mathrm{f})$ which repeats with integer multiples of 9 kHz .

The sampled signal spectrum is passed through a LPF of cutoff frequency 12 KHz . Thus, the filtered-out sinusoids are of $2 \mathrm{KHz}, 7 \mathrm{KHz}$ and 11 KHz frequency.
37. Ans. A.
$G(s)=\frac{2(s+1)}{s^{3}+k s^{2}+2 s+1}$
$\omega=2 \mathrm{rad} / \mathrm{sec}$
$\mathrm{K}=$??
$1+G(s) H(s)=0$
$1+\frac{2(k+1)}{s^{3}+k s^{2}+2 s+1} \Rightarrow s^{3}+k s^{2}+4 s+3=0$
$s^{3} \quad 1 \quad 4$
$s^{2} \quad k \quad 3$
$s^{1} \frac{4 k-3}{k} 0$
$s^{0} \quad 3$
For marginal stable
$\frac{4 k-3}{k}=0 \Rightarrow k=\frac{3}{4}=0.75$
Cross check
Take auxiliary equation
$k s^{2}+3=0$
$\frac{3}{4} s^{2}+3=0$
$s \pm j 2$
$\omega=2 \mathrm{rad} / \mathrm{sec}$
$k=\frac{3}{4}$
38. Ans. A.

To find
$R_{t h}=\frac{V}{I}$
Here
$i_{0}=\frac{V}{1 \Omega}=V$
Nodal at V
$\frac{V-3 i_{0}}{I}+\frac{V}{I}-I=0$
$V-3 V+V-I=0$
$R_{t h}=-1 \Omega$
39. Ans. A.

Given $x(t)=\frac{\sin u(t)}{\pi t}$

By using frequency integration property,

$$
\frac{x(t)}{t} \stackrel{L}{\leftrightarrow} \int_{-\infty}^{\infty} X_{1}(u) d u
$$

Consider

$$
\begin{aligned}
& x_{1}(t)=\sin t u(t) \stackrel{L}{\leftrightarrow} \frac{1}{s^{2}+1}=X_{1}(s) \\
& \therefore \int_{-\infty}^{s}\left(\frac{1}{u^{2}+1}\right) d u=\frac{\pi}{2} \tan ^{-1}(s) \\
& \therefore L[x(t)]=\frac{1}{\pi}\left[\frac{\pi}{2}-\tan ^{-1}(s)\right]=X(s) \\
& \therefore Y(s)=X(s) H(j)=\frac{1}{2 s}-\frac{1}{\pi s} \tan ^{-1} s
\end{aligned}
$$

By using final value theorem,
$\lim _{t \rightarrow \infty}=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0}\left[\frac{1}{2}-\frac{1}{2} \tan ^{-1}(s)\right]=\frac{1}{2}$
40. Ans. D.
$I=\bigcirc$

Consider
$f(z)=e^{z}\left(\frac{z^{2}-1}{z^{2}+1}\right)=e^{z}\left(\frac{z^{2}-1}{(z+i)(z-i)}\right)$
$\Rightarrow z= \pm i$ are simple poles of $f(z)$ which lie inside $|z|=3$ Residue of $f(z)$ at
$z=i=\lim _{z \rightarrow i}(z-i)\left(e \frac{\left(z^{2}-1\right)}{(z+i)(z-i)}\right)=i e^{i}$
\& Residue of $f(z)$ at
$z=i=\lim _{z \rightarrow i}(z+i)\left(e^{z} \frac{\left(z^{2}-1\right)}{(z+i)(z-i)}\right)=-i e^{-i}$
\therefore By residue theorem,

$$
\begin{aligned}
I & =0 \quad=2 \pi i\left(i e^{i}-i e^{-i}\right) \\
& =2 \pi\left(e^{i}-e^{-i}\right) \\
= & -4 \pi i\left(\frac{e^{i}-e^{-i}}{2 i}\right)=4 \pi i \sin (1)
\end{aligned}
$$

41. Ans. C.

It is a useless channel as MAP criteria cannot decide anything on receiving " 0 " we cannot decide what is transmitted.
42. Ans. A.

If left side is p -region and right side is n -region then electric field triangle will be down warded and if the left side is n-region and right side is p-region, then electric field triangle will be upward.
43. Ans. D.
$x_{1}(t)=x_{2}(t)$
$s X_{1}(s)=X_{2}(s) \rightarrow(1)$
$x_{2}(t)+2 x_{1}(t)+3 x_{2}(t)=r(t)$
$s X_{2}(s)+2 X_{1}(s)+3 X_{2}(s)=R(s)$
$\left[s^{2}+2+3 s\right] X_{1}(s)=R(s)$
$C(s)=X_{1}(s)=\frac{R(s)}{s^{2}+3 s+2}$
$\frac{C(s)}{R(s)}=\frac{1}{(s+1)(s+2)}$
system is over damped
44. Ans. A.

Since $h_{1}(t) a n d h_{2}(t)$ and are connected in parallel the resultant system can be given as follows.

$y(t)$
$\therefore y(t)=x(t) *\left[h_{1}(t)+h_{2}(t)\right]$
From the given $h_{1}(t) \& h_{2}(t)$

$$
\begin{aligned}
& h_{1}(t)+h_{2}(t)=[2 \delta(t+2)-3 \delta(t+1)+\delta(t-2)] \\
& \because \quad(t) \\
& y(t)=2 u(t+2)-3 u(t+1)+u(t-2)
\end{aligned}
$$

\therefore Energy of
$y(t)=\int_{-2}^{-1}(2)^{2} d t+\int_{-1}^{2}(-1)^{2} d t=4[1]+1[3]=7$

45. Ans. C.

If $V_{D} \geq V_{G}-V_{T H}$, then transistor is working in saturation region.
So, For transistor M_{2}
$V_{D_{2}}>V_{G_{2}}-V_{T H}$
$3 V>(2.5-1) V$
Assume that M1 is working in saturation, so that

$$
\begin{aligned}
& I_{D 1}=I_{D 2} \\
& V_{G S 1}-V_{T H}=V_{G S 2}-V_{T H} \\
& 2 V=V_{G 2}-V_{S 2}
\end{aligned}
$$

$=2.5 \mathrm{~V}-V_{S 2}$
$\therefore V_{s 2}=V_{D 1}=0.5 \mathrm{~V}$.
Now, for M1, transistor to work in saturation $V_{D 1} \geq V_{G 1}-V_{T H}$ but it is not satisfied by M1 transistor and $V_{D 1} \geq V_{G 1}$ so, transistor M 1 is ON but working in linear region.
46. Ans. C.
$\bar{P} \bar{Q} R+\bar{P} Q R+P \bar{Q} R$
47. Ans. B.
$x(t)=5 \sin \left(4 \pi \times 10^{3} t-10 \pi \cos \left(2 \pi \times 10^{2} t\right)\right)$
Transform theorem frequency
$f_{1}(t)=f_{c}+\frac{1}{2 \pi} k_{p} \cdot \frac{d}{d t} m(t)$
$\frac{d}{d t} m(t)=5 \cos \left(4 \pi \times 10^{3} t-10 \pi \cos \left(2 \pi \times 10^{3} t\right)\right)$
$\left(4 \pi \times 10^{3}+10 \sin \left(2 \pi \times 10^{3} t\right) .2 \pi \times 10^{3}\right)$
$\left.\frac{d}{d t} m(t)\right|_{t=0.5}=5 \cos (2 \pi+10 \pi) \times\left(4 \pi \times 10^{3}+0\right)$
$=20 \pi \times 10^{3}$
$f_{1}(t)=20+\frac{1}{2 \pi} \times 5 \times 20 \pi=70 \mathrm{kHz}$
48. Ans. B.

$$
\begin{aligned}
& f(x)=\frac{1}{3} x\left(x^{2}-3\right)=\frac{x^{3}}{3}-x \\
& f^{\prime}(x)=\frac{3 x^{2}}{3}-1=x^{2}-1 \\
& \Rightarrow x^{2}-1=0 \\
& \Rightarrow x^{2}-1=0 \\
& \Rightarrow x= \pm 1 \\
& f^{\prime \prime}(x)=2 x \\
& f^{\prime \prime}(1)=2>0 \Rightarrow
\end{aligned}
$$

at $x=1, f(x)$ has local minimum.
$f^{\prime \prime}(-1)=-2<0 \Rightarrow a t x=-1, f(x)$ has local maximum
For $x=1$, local minimum value
$=f(1)=\frac{1}{3}-1=\frac{-2}{3}$
Finding $f(-100)=-333433.33$
$f(100)=333233.33$
($\because x=100,-100$ are end points of interval)
\therefore Minimum occurs at $\mathrm{x}=-100$
49. Ans. A.

At $t=0$

AT $\mathrm{t} \geq 0$

$\tau=\frac{L}{R}=\frac{2.5}{5}=\frac{1}{2} \Rightarrow i_{L}(\infty)=0$
$i_{L}=5 e^{-2 t}$
$i(t)=10-5 e$
$A t . . t=0.5 s$
$i(0.5)=10-\frac{5}{e}=8.16 \mathrm{~A}$
50. Ans. A.

$20 \mathrm{k} \Omega$
KCL at node 'a'
$\frac{V_{0}-V_{i}}{20}=\frac{V_{x}-0.7}{5}$
$V_{c}-V_{i}=4 V_{x}-2.8$
$V_{0}=5 V_{x}-2.8$
Now,
$I_{s} e^{V_{X} / V_{T}}=31 l_{s} e^{V_{s} / V_{T}}$
$\frac{V_{x}}{V_{T}}=\ln 31+\frac{V_{s}}{V_{T}}$
$\frac{V_{x}-V_{s}}{V_{T}}=\ln 31$
$\Rightarrow V_{x}=0.789 \mathrm{~V}$
From equation (i)
$V_{0}=5 \times 0.789-2.8=1.145 \mathrm{~V}$
51. Ans. A.

From the state diagram, let us obtain the transition of states and out when IN channel.
Initial state is
So, the input sea is 10101101001101
When
IN=1 Then $S_{0} \rightarrow S_{1}$, with out $=0$
IN $=0$ Then $S_{1} \rightarrow S_{z}$, with out $=0$
IN=1 Then $S_{1} \rightarrow S_{n}$, with out $=1$
IN=0 Then $S_{3} \rightarrow S_{2}$, with out $=0$
IN=1 Then $S_{2} \rightarrow S_{3}$, with out $=1$
IN=1 Then $S_{3} \rightarrow S_{1}$, with out $=0$
IN $=0$ Then $S_{1} \rightarrow S_{2}$, with out $=0$
IN=1 Then $S_{2} \rightarrow S_{3}$, with out $=1$
IN=0 Then $S_{3} \rightarrow S_{2}$, with out $=0$
IN $=0$ Then $S_{2} \rightarrow S_{u}$, with out $=0$
IN=1 Then $S_{0} \rightarrow S_{1}$, with out $=0$
IN=1 Then $S_{1} \rightarrow S_{1}$, with out $=0$
IN=0 Then $S_{1} \rightarrow S_{2}$, with out $=0$
IN=1 Then $S_{2} \rightarrow S_{3}$, with out =1
\rightarrow The ticketed mark now corresponding to output $=1$.
So output will be 1 ' 4 ' times.
52. Ans. B.

Cut off frequency of $T E_{10}$ is
$f_{c}=\frac{c}{2} \frac{1}{a}=\frac{3 \times 10^{8}}{2} \times \frac{1}{2.29 \times 10^{-2}}=65.5 \times 10^{8} \mathrm{~Hz}$
Since $b<\frac{a}{2} \Rightarrow$ next higher mode is $T E_{20}$
$\left.f\right|_{T E_{20}}=\frac{c}{2} \times \frac{2}{a}=13.1 G H z$
$f \leq 0.95 \times 13.1=12.45 G H z$
53. Ans. A.

$$
J_{s}=\frac{J_{L}}{\left[e^{\left(\frac{V_{O C}}{V_{T}}\right)-1}\right]}=\frac{2.5 \times 10^{-3}}{\left[e^{\frac{(0.451)}{0.025}}-1\right]}=3.6 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2}
$$

If incident light is increased by 20 times $\Rightarrow \mathrm{J}_{\mathrm{L}}$ is also increased by 20 times
$\mathrm{J}^{1} \mathrm{~L}=20 \times \mathrm{J}_{\mathrm{L}}=50 \mathrm{~mA} / \mathrm{cm}^{2}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}}{ }^{1} & =\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{~J}_{\mathrm{L}}}{\mathrm{~J}_{\mathrm{o}}}+1\right) \\
& =2 \times 25 \mathrm{mV} \ln \left(\frac{50 \times 10^{-3}}{3.0245 \times 10^{-7}}+1\right) \\
& =0.6 \mathrm{~V}
\end{aligned}
$$

54. Ans. A.
a.c equivalent circuit for the given figure

$g_{m}=\frac{I_{C}}{V_{T}}=\frac{2.6 \times 10^{-3}}{26 \times 10^{-3}}=100 \mathrm{~m} \Omega$
$R_{c}=1 k ; R_{E}=\frac{1}{g_{m}} ;$
$A_{V}=\frac{-g_{m} R_{E}}{1+g_{m} R_{E}}=-\frac{100 \times 1}{1+1}=-50$
$\left|A_{V}\right|=50$
55. Ans. B.

Drain current in saturation is
$I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left[V_{G S}-V_{T H}\right]^{2}$
For transistor T_{1}
$I_{D}=I_{D 1}$ and
$g_{m}=g_{m 1}=\frac{\partial I_{D 1}}{\partial V_{G S}}=\mu_{n} C_{o x} \frac{\omega}{L}\left(V_{G S}-V_{T H}\right)$
For transistor T2
$W_{2}=2 W_{1}=2 \mathrm{~W}$
$\left(V_{G S}-V_{T h}\right)_{2}=2\left(V_{G S}-V_{T h}\right)_{1}=2\left(V_{G S}-V_{T h}\right)$
$I_{D_{2}}=\frac{1}{2} \mu_{n} C_{o x} \frac{2 W}{L}\left[2\left(V_{G S}-V_{T H}\right)\right]^{2}=8 I_{D_{1}}$
$g_{m_{2}}=\frac{\partial I_{D_{2}}}{\partial V_{G S_{2}}}=\mu_{n} C_{o x} \frac{2 W}{L} \times 2\left(V_{G S}-V_{T H}\right)=4 g m_{1}$

