Solutions

General Aptitude

1. Ans. A.

Hurtful would be best option as person is complaining about her.
2. Ans. B.

3. Ans. B.

Given 40% of deaths on city roads are drunken driving
w.k.t in pie chart $100 \% \rightarrow 360^{\circ} 1 \% \rightarrow\left(\frac{360}{100}\right) 40 \% \rightarrow$ $\left(\frac{360}{100}\right) \times 4040 \% \rightarrow 144^{\circ}$
4. Ans. D.

Let H is house hold consumption and P is the other consumption.
Given
$\mathrm{H} \times 0.8+\mathrm{P} \times 1.7=(\mathrm{H}+\mathrm{P}) \times 0.75$
Ratio is negative.
5. Ans. A.

Past Tense is used.
6. Ans. D.

Option D is correct according to the passage
7. Ans. A.

No. of sub groups such that every sub group has at least one Indian

$$
\begin{aligned}
& =\underbrace{3_{C_{1}}+3_{C_{2}}+3_{C_{3}}}_{\text {Ondindian }}+\underbrace{3_{C_{1}} \times 3_{C_{2}}+3_{C_{1}}}_{\text {Oneindian\&remaining chinese }}+3_{C_{1}} \times 3_{C_{3}} \\
& +\underbrace{3_{C_{2}} \times 3_{C_{1}}+3_{C_{3}} \times 3_{C_{2}}+3_{C_{2}} \times 3_{C_{2}}}_{\text {2indian\&remaining chinese }}+\underbrace{3_{C_{3}} \times 3_{C_{1}}+3_{C_{3}} \times 3_{C_{2}}+3_{C_{3}} \times 3_{C_{3}}}_{\text {3indian\&remaining chinese }}
\end{aligned}
$$

$=7+9+9+3+6+9+9+3+3+3+1=56$.
Alternate method
Sub groups containing only Indians
$=3_{C_{1}}+3_{C_{2}}+3_{C_{3}}=3+3+1=7$
Subgroups containing one Indian and rest chinese
$=3_{C_{1}}\left[3_{C_{1}}+3_{C_{2}}+3_{C_{3}}\right]=3[3+3+1]=21$
Sub groups containing two Indian and remaining Chinese $3_{C_{2}}\left[3_{C_{1}}+3_{C_{2}}+3_{C_{3}}\right]=21$

Sub groups containing three Indian and remaining Chinese
$3_{C_{3}}\left[3_{C_{1}}+3_{C_{2}}+3_{C_{3}}\right]=7$
\therefore Total no. of sub group $=7+21+21+7=56$
8. Ans. C.

Down- up-Down
(between 475 \& 500)

Atp, height >575
(between 500 \&525)
9. Ans. A.

Given speeds both car \& Truck $=36$ km/hour
They travel in $1 \mathrm{hr}=36 \mathrm{~km}=36000 \mathrm{~m}$.

5 m	5 m	truck	$20 \mathrm{~m} \mid$	
car	gap	10 m	gap	$\mathrm{lhr}=36 \mathrm{~km}=36000 \mathrm{~m}$

\therefore Maximum no. of vehicles than can use the bridge in I hour $=\frac{36000 m}{50 m}=720 \times 2=1440$ vehicles
Alternate method
Length of truck + gap required $=10+20=30 \mathrm{~m}$
Length of car + gap required $=5+15=20 \mathrm{~m}$
Alternative pairs of Truck and car needs $30+20=50 \mathrm{~m}$.
Let ' n ' be the number of repetition of (Truck + car) in 1 hour (3600 sec).
Given speed $36 \mathrm{~km} / \mathrm{hr} 10 \mathrm{~m} / \mathrm{sec}$
$\frac{50 \mathrm{~m} \times n}{3600 \mathrm{sec}}=36 \mathrm{~km} / \mathrm{hr}$
$\Rightarrow \frac{50 n}{3600} \mathrm{~m} / \mathrm{sec}=10 \mathrm{~m} / \mathrm{sec}$
$\Rightarrow n=\frac{36000}{50}=720($ Truck + car $)$
So, 720 Truck car passes 72021440 vehicles.
10. Ans. A.

Following circular seating arrangement can be drawn.

Only one such arrangement can be drawn.
The person on third to the left of V is X .

Electronics \& Communications

1. Ans. C.
$\mathrm{f}_{\text {clock }}=5 \mathrm{MHz} ; \mathrm{T}_{\text {clock }}=0.2 \times 10^{-6} \mathrm{sec}$
$\mathrm{T}_{\text {execution }}=1.4 \mu \mathrm{~s}$
No. of T-state required $=\frac{1.4}{0.2}=7$
2. Ans. A.

For an input-output relation if the present output depends on present and past input values then the given system is "Causal".
For the given relation,

$$
y[n]=\left\{\begin{array}{cc}
n|x[n]| & \text { for } 0 \leq n \leq 10 \\
x[n]-x[n-1] & \text { otherwise }
\end{array}\right.
$$

For n ranging from 0 to 10 present output depends on present input only.
At all other points present output depends on present and past input values.
Thus the system is "Causal".
Stability
If $x[n]$ is bounded for the given finite range of n i.e. $0<$ $\mathrm{n} 10 \mathrm{y}[\mathrm{n}]$ is also bounded.
Similarly $x[n]-x[n-1]$ is also bounded at all other values of n
Thus, the system is "stable".
3. Ans. B.
$y_{1}=1, y_{2}=x, y_{3}=x^{2}$
Consider
$\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|=\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & 2 x \\ 0 & 0 & 2\end{array}\right|=2\left|\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right|=2 \neq 0$
$\Rightarrow y_{1}, y_{2}, y_{3}$ are linearly independent $\forall x$
4. Ans. C.
$\mathrm{A}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1\end{array}\right]$
For eigen values $(\lambda),|A-\lambda I|=0$
$\Rightarrow\left[\begin{array}{ccccc}1-\lambda & 2 & 3 & 4 & 5 \\ 5 & 1-\lambda & 2 & 3 & 4 \\ 4 & 5 & 1-\lambda & 2 & 3 \\ 3 & 4 & 5 & 1-\lambda & 2 \\ 2 & 3 & 4 & 5 & 1-\lambda\end{array}\right]=0$
$R_{1} \rightarrow R_{1}+R_{2}+R_{3}+R_{4}+R_{5}$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccccc}
15-\lambda & 15-\lambda & 15-\lambda & 15-\lambda & 15-\lambda \\
5 & 1-\lambda & 2 & 3 & 4 \\
4 & 5 & 1-\lambda & 2 & 3 \\
3 & 4 & 5 & 1-\lambda & 2 \\
2 & 3 & 4 & 5 & 1-\lambda
\end{array}\right]=0 \\
& \Rightarrow\left(15-\lambda\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
5 & 1-\lambda & 2 & 3 & 4 \\
4 & 5 & 1-\lambda & 2 & 3 \\
3 & 4 & 5 & 1-\lambda & 2 \\
2 & 3 & 4 & 5 & 1-\lambda
\end{array}\right]=0\right. \\
& \Rightarrow 15-\lambda=0 \\
& \Rightarrow \lambda=15
\end{aligned}
$$

5. Ans. A.

Given $\gamma=(0.1+j 40) m^{-1}$
Here $\alpha=0.1 \frac{\omega_{P}}{m}$
We know that,
$1 \frac{\omega_{P}}{m}=8.686 \frac{d B}{m} \Rightarrow 0.1 \frac{\omega_{P}}{m}=0.8686 \frac{d B}{m}$
6. Ans. A.

Silicon atoms act as P- type dopants in Arsenic sites and n - type dopants in Gallium sites.
7. Ans. C.
$|M|=\left[\begin{array}{ccc}5 & 10 & 10 \\ 1 & 0 & 2 \\ 3 & 6 & 6\end{array}\right]=5(0-12)-10(6-6)=-60-0+60=0$
But a 2×2 minor, $\left[\begin{array}{cc}5 & 10 \\ 1 & 0\end{array}\right]=0-10=-10 \neq 0$
\Rightarrow Rank $=2$
8. Ans. C.

As per the change carrier profile, base - to - emitter junction is reverse bias and base to collector junction is forward bias, so it works in Inverse active.
9. Ans. D.

Miller effect increase input capacitance, so that there will be decrease in gain in the high frequency cutoff frequency.
10. Ans. A.

\Rightarrow Dutyde of $\mathrm{o} / \mathrm{p}=\frac{\frac{T_{C L K}}{2}-\frac{T_{C L K}}{5}}{T_{C L K}} \times 100=30 \%$
11. Ans. A.

In phase lag compensator pole is near to $j \omega$ - axis,

12. Ans. B.

Unequal propagation delay

Case I :
Gate $1 \rightarrow 2 n s$
Gate $2 \rightarrow 1$ ns

Case II :
Gate $1 \rightarrow 1$ nsec
Gate $2 \rightarrow 2$ nsec

\therefore Either $\mathrm{x}=1, \mathrm{y}=0$ or $\mathrm{x}=0, \mathrm{y}=1$
13. Ans. A.

Required probability
$=6\left(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}\right)=\frac{1}{36}=0.028$
14. Ans. A.

If $x(t)=-x(-t)$ the given periodic signal is odd symmetric. For an odd symmetric signal a_{n} for all n
If $\mathrm{x}(\mathrm{t})=-x\left(t-\frac{\pi}{\omega_{0}}\right) \quad \because \quad \frac{\pi}{\omega_{0}}=\frac{T_{0}}{2} \quad$ where $\quad \mathrm{T}_{0} \quad$ is fundamental period then the given condition satisfies half-wave symmetry.
For half-wave, symmetrical signal all coefficients a_{n} and b_{n} are zero for even value of n.
15. Ans. A.
$\mathrm{G}(\mathrm{s})=\frac{(s+1)}{s^{p}(s+2)(s+3)}$
If $p=1, e_{s s}($ for ramp input $)=6$
$\mathrm{k}_{\mathrm{v}}=\frac{1}{6}$
$\mathrm{p}=1, \mathrm{e}_{\mathrm{ss}}($ for ramp input $)=0$
$\mathrm{k}_{\mathrm{p}}=\infty, \mathrm{e}_{\mathrm{ss}}=\frac{1}{1+k_{p}}=0$
16. Ans. D.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{bi}}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}\right) \\
& =0.25 \ln \left(\frac{10^{18}}{10^{15}}\right)=0.173 \mathrm{~V} .
\end{aligned}
$$

17. Ans. B.
$\mathrm{V}_{\text {sat }}=15 \mathrm{~V},-\mathrm{V}_{\text {sat }}=-15 \mathrm{~V}$
$V_{\text {UTP }}=\frac{(15-3) \times 5}{15}+3=\frac{12}{3}+3=7 \mathrm{~V}$
$V_{\text {LTP }}=\frac{(-15-3) \times 5}{15}+3=\frac{-18}{3}+3=-6+3=-3 V$

18. Ans. A.

$\mathrm{V}_{1}=\left(\frac{1}{2+j \omega}\right) \times 1 \omega \angle 0$
$\mathrm{v}_{1}=\frac{100}{\sqrt{4+\omega^{2}}} \angle-\tan ^{-1} \frac{\omega}{2}$
$\mathrm{V}_{2}=\frac{1+j \omega}{2+j \omega} 100 \angle 0$
$\mathrm{V}_{2}=\left(\frac{\sqrt{1+\omega^{2}}}{\sqrt{4+\omega^{2}}}\right) \times 1 \omega \angle-\tan ^{-1} \frac{\omega}{2}+\tan ^{-1} \omega$
$\mathrm{V}_{2}-\mathrm{V}_{1}=\frac{\pi}{4}$
$-\tan ^{-1} \frac{\omega}{2}+\tan ^{-1} \omega+\tan ^{-1} \frac{\omega}{2}=\frac{\pi}{4}$
$\omega=\tan \frac{\pi}{4}=1 \mathrm{rad} / \mathrm{sec}$
19. Ans. B.

For ISI free pulse, If $P(t)$ is having spectrum $P(f)$
Then $\sum_{k=\infty}^{\infty} P\left(f-k R_{S}\right)=$ constant
$\mathrm{R} \mathrm{s}=2 \mathrm{KSpa}$
Thin condition is met by pulse given in option B.
20. Ans. A.
$\mathrm{G}(\mathrm{s})=\frac{1}{S^{q-p}}\left[\frac{1+b_{1} S^{-1}+---+b_{p} S^{-p}}{1+q_{1} S^{-1}+---+a_{p} S^{-q}}\right]$
If $S^{q-p}=S^{3}$, when $\mathrm{p}=0$ and $\mathrm{q}=3$, then
It has $-60 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\infty$
21. Ans. C.

A good trans conductance amplifier should have high input and output resistance.
22. Ans. A.

For two independent random variable
$I(X ; Y) H(X)=H(X / Y)$
$H(X / Y)=H(X)$ for independent X and Y
$\Rightarrow I(X ; Y)=0$
23. Ans. D.

If a system is non-causal then a pole on right half of the s-plane can give BIBO stable system. But for a causal system to be BIBO all poles must lie on left half of the complex plane.
24. Ans. D.

DPCM Block diagram
e_{q} [n] is quantized e[n]
$e[n]$ is difference of message
signal sample with its prediction.
25. Ans. C.
$\mathrm{C}=\mathrm{Blog}_{2}\left[1+\frac{S}{N_{0} B}\right]$
Where $\mathrm{S}=\frac{P_{t} G_{t} A_{e r}}{4 \pi r^{2}}$

$$
\begin{aligned}
& =\frac{P_{t} A_{e r} A_{e} t}{\lambda^{2}\left(r^{2}\right)}=p_{t} \frac{4 A_{e r} \cdot A_{e} t}{4 \cdot \lambda^{2}\left(r^{2}\right)} \\
& =\frac{P_{t} \cdot A_{e r} \cdot A_{e} t}{A^{2} r^{2}}=S
\end{aligned}
$$

Channel capacity remain same.
26. Ans. A.

Let $\mathrm{f}(\mathrm{x})=x^{3}+x-1 \mathrm{f}^{\prime}(\mathrm{x})=3 x^{2}+1$
Given $X_{0}=1$
By Newton Raphson method.
$1^{\text {st }}$ iteration ,
$\mathrm{x}_{1}=\mathrm{x}_{0}-\frac{f\left(\mathbf{x}_{\mathbf{0}}\right)}{f^{\prime}\left(\mathbf{x}_{0}\right)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{1}{4}=\frac{3}{4}=0.75$
$2^{\text {nd }}$ iteration. $\mathrm{x}_{2}=\mathrm{x}_{1}-\frac{f\left(\mathbf{x}_{1}\right)}{f^{\prime}\left(\mathbf{x}_{1}\right)}=0.75-\frac{f(0.75)}{f^{\prime}(0.75)}-\frac{0.17}{2.69}$
$=0.69$
27. Ans. B.
$\mathrm{u}_{0}(\mathrm{t})=5 \cos (2000 \pi \mathrm{t})$
$\mathrm{F}_{0}=10 \mathrm{kHz}$
$\mathrm{U}_{1}(\mathrm{t})=5 \cos (22000 \pi \mathrm{t})$
$\mathrm{f}_{1=}=11 \mathrm{kHz}$
For $\mathrm{u}_{0}(\mathrm{t})$ and $\mathrm{U}_{1}(\mathrm{t})$ to be orthogonal, it is necessary that
$\mathrm{f}_{1}-\mathrm{f}_{0}=\frac{n}{2 T} ;(11-10) \times 10^{3}=\frac{1}{2 T}$
$\Rightarrow \mathrm{T}=\frac{1}{2 \times 10^{3}}=0.5 \mathrm{~m} \mathrm{sec}$
28. Ans. A.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{v}}=\left[\frac{V_{\mathbf{0}}}{V_{1}}\right]=\frac{R_{c}}{r_{e}} \\
& \mathrm{r}_{\mathrm{e}}=\frac{V_{T}}{I_{E}} \\
& \mathrm{~V}_{\mathrm{G}}=\frac{12 \times 47}{120}=4.7 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{EE}}+\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}$
$I E=\frac{4.7-0.7}{2 \times 10^{3}}=2 \mathrm{~mA}$
$r_{\mathrm{e}}=\frac{25}{2}=12.5 \Omega$
$\mathrm{A}_{\mathrm{V}}=\frac{R_{c} \| R_{L}}{r_{e}}=\frac{2 \times 10^{3} \| 8 \times 10^{3}}{12.5}=128$

29. Ans. A.
$\mathrm{V}_{1}=\left(\frac{4+j 3}{4+j 3+5-12 j}\right) \times 100 \angle 0 \Rightarrow$
$\mathrm{V}_{1}=\left(\frac{4+j 3}{9+9 j}\right) \times 100 \angle 0$
$\mathrm{V}_{2}=\left(\frac{5-12 j}{4+j 3+5-12 j}\right) \times 100 \angle 0 \Rightarrow\left(\frac{5-12 j}{9+9 j}\right) \times 100 \angle 0$
$\left[\frac{V_{1}}{V_{2}}\right]=\left[\frac{5-12 j}{4+j 3}\right]=\frac{\sqrt{5^{2}+12^{2}}}{\sqrt{4^{2}+3^{2}}}=\frac{13}{5}=2.6$
30. Ans. D.
$\frac{d y}{d x}=(x+y-1)^{2}$
Put $\mathrm{x}+\mathrm{y}-1=\mathrm{t}$
$\Rightarrow 1+\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow 1+\frac{d y}{d x}=\frac{d t}{d x}-1$
From (1), $\frac{d t}{d x}-1=t^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{d t}{d x}=1+t^{2} \\
& \Rightarrow \int \frac{1}{1+t^{2}} d t=\int d x \\
& \Rightarrow \tan ^{-1}(t)=x+C \\
& \Rightarrow \tan ^{-1}(x+y-1)=x+C
\end{aligned}
$$

31. Ans. A.
$\mathrm{G}(\mathrm{s})=\frac{K\left(s^{2}+2 s+2\right)}{\left(s^{2}-3 s+2\right)}$
$\mathrm{C} . \mathrm{E}=1+\mathrm{G}(\mathrm{s})=\mathrm{s}^{2}-3 \mathrm{~s}+2+\mathrm{ks}{ }^{2}+2 \mathrm{ks}+2 \mathrm{k}=0$
$=s^{2}(1+k)+s(2 k-s)+2 k+2=0$
If closed loop system to be stable all coefficients to positive $\mathrm{k}>-1$
$k>-1 \cap k>1.5 \cap k>-1$
So, k >1.5
32. Ans. A.

The straight line joining $A(0,2,1)$ and $B(4,1,-1)$ is

$$
\begin{aligned}
& \frac{x-0}{4-0}=\frac{y-2}{1-2}=\frac{z-1}{-1-1} \\
& \Rightarrow \frac{x}{4}=\frac{y-2}{-1}=\frac{z-1}{-2}=t \text { (say) } \\
& \Rightarrow \mathrm{x}=4 \mathrm{t}, \mathrm{y}=2-\mathrm{t}, \mathrm{z}=1-2 \mathrm{t} \\
& \Rightarrow \mathrm{dx}=4 \mathrm{dt}, \mathrm{dy}=-\mathrm{dt}, \mathrm{dz}=-2 \mathrm{dt} \\
& \Rightarrow \text { For } \mathrm{x}=0 \Rightarrow \mathrm{t}=0 \\
& \Rightarrow \text { For } \mathrm{x}=4 \Rightarrow \mathrm{t}=1 \\
& \mathrm{I}=\int_{C}(2 z d x+2 y d y+2 x d z) \\
& =\int_{t-0}^{1} 2(1-2 t) 4 d t+2(2-t)(-d t)+2(4 t)(-2 d t) \\
& =\int_{t-0}^{1}(-30 t+4) d t=\frac{-30 t^{2}}{2}+4 t
\end{aligned}
$$

33. Ans. A.
$\mathrm{C}=\frac{\in A}{W}$
$\mathrm{C} \propto \frac{1}{w}$ and $\mathrm{W} \propto \frac{1}{\sqrt{\text { doping }}}$
$\mathrm{C} \propto \sqrt{\text { doping }}$
$\frac{\mathbf{C}_{2}}{\mathbf{C}_{1}}=\sqrt{\frac{(\text { doping })_{2}}{(\text { doping })_{1}}}=\sqrt{\frac{10^{16}}{10^{14}}}=\sqrt{100}=10$
34. Ans. A.

For circular polarization, the phase difference between E_{x} \& E_{y} is $\mathrm{n} / 2$
The phase difference for linear polarization should be $п$ \Rightarrow So the wave must travel a minimum distance such that the extra phase difference of $\pi / 2$ must occur.
$\beta_{y}\left|I_{\text {min }}-\beta_{x}\right|_{\text {min }}=\frac{\pi}{2}$
$\Rightarrow I_{\text {min }}$
$\frac{\omega}{c}\left[n_{y}-n_{x}\right]=\pi / 2 \Rightarrow \frac{2 \pi l_{\min }}{\lambda_{0}}\left[n_{y}-n_{x}\right]=\pi / 2$
$\Rightarrow I_{\text {min }}=$
$\frac{\lambda_{0}}{4\left[n_{y}-n_{x}\right]}=\frac{1.5 \times 10^{-6}}{4[0.0001]}=\frac{1.5}{4} \times 10^{-2}$
$=0.375 \times 10^{-2} \mathrm{~m}=0.375 \mathrm{~cm}$
35. Ans. A.

Given
$x[n]=\{1,2,1\} ; h[0]=1$
$h[n]=\{1, a, b\}$

$Y[n]=\{1,2+a, 2 a+b+1,2 b+a, b\}$
It is given that $y[1]=3$
$\therefore 2+a=3 \Rightarrow a=1$
Similarly $2 a+b+1=4 \Rightarrow b=3-2(1)=1$
$b=1$
$\therefore y[3]=2(1)+1=3$
$Y[4]=b=1$
$\therefore 10 y[3]+y[4]=30+1=31$
36. Ans. C.
$\mathrm{F}(\mathrm{s})=s^{4}+s^{2}+1=0$
Let take $s^{2}=\mathrm{t}$
$t^{2}+\mathrm{t}+1=0$
$\mathrm{t}=\frac{-1 \pm i \sqrt{3}}{2}$
Where $\mathrm{t}=s^{2}=\frac{-1 \pm i \sqrt{3}}{2}$
$s^{2}=\frac{-1+i \sqrt{3}}{2}=e^{\frac{j 2 \pi}{3}} \Rightarrow s^{2}=\frac{-1-i \sqrt{3}}{2}=e^{\frac{-j 2 \pi}{3}}$
$\mathrm{S}= \pm e^{\frac{j 2 \pi}{6}}$ and $\mathrm{s}= \pm e^{\frac{-j 2 \pi}{6}}$
Hence two roots contain RHS and two roots contain LHS plane.
37. Ans. A.
$v_{d}=\mu_{n} \in$
$\boldsymbol{\mu}_{\mathrm{n}}=\frac{\mathbf{v}_{\mathbf{d}}}{\varepsilon}=\frac{10^{7}}{5 \times 10^{7}} 20 \frac{\mathrm{~cm}^{2}}{V-\mathrm{sec}}$
$\mathrm{E}=$
$\frac{V}{d}=\frac{5}{1 \times 10^{-4}} v / \mathrm{cm}$
$\mathrm{J}_{\text {drift }}=\mathrm{nqv}_{\mathrm{d}}=\mathrm{nq} \mu_{\mathrm{n}} \in$
$J_{\text {drift }}=\mathrm{nqv}_{\mathrm{a}}=\mathrm{nqq}_{\mathrm{n}} \varepsilon=10^{16} \times 1.6 \times 10^{-19} \times 20 \times 10^{4}=1.6$
$\mathrm{KA} / \mathrm{c}^{2}{ }^{2}$
38. Ans. A.
$\mathrm{V}_{\mathrm{G}}=\frac{8 \times 5}{5}=5 \mathrm{~V}$
$V_{G S}=V_{G-} I_{D} R_{S}=5-10^{3} I_{D}$
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{W}{L}\right)\left(\mathbf{V}_{\mathbf{G S}-} \mathbf{V}_{\mathbf{T}}\right)^{2}$
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \times 1 \times 10^{-3}\left(\mathbf{V}_{\mathbf{G S}-} \mathbf{V}_{\mathrm{T}}\right)^{2}$
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \times 10^{-3}\left[5-10^{3} I_{D}-1\right]^{2}=\frac{10^{-3}}{2}\left[4-10^{-3} I_{D}\right]^{2}$
$I_{D}=\frac{10^{-3}}{2}\left[16+10^{6} I_{D}{ }^{2}-8 \times 10^{3}\right]$
$0.5 \times 10^{-3} I_{D}{ }^{2}-5 \mathrm{I}_{D}-8 \times 10^{-3}=0$
$\mathrm{I}_{\mathrm{D}}=8 \mathrm{~mA}, 2 \mathrm{~mA}$
I_{D} must be least value
So $I_{D}=2 m A$
39. Ans. A.

Since DC components in same in $\mathrm{S}_{\mathrm{x}}(\mathrm{f})$ and $\mathrm{S}_{\mathrm{y}}(\mathrm{f})$
$\Rightarrow E[x(t)]=E[y(t)]$
$E\left(x^{2}(t)\right)=$ Area under
$\mathrm{S}_{\mathrm{x}}(\mathrm{f})=\int_{-\infty}^{\infty} e^{-|f|} d f=2 \int_{-\infty}^{\infty} e^{-f \mid} d f=2$
$E\left(y^{2}(t)\right)=$ Area under
$\left.\mathrm{S}_{\mathrm{y}}(\mathrm{f})=\int_{-0}^{\frac{1}{2}} e^{-f} d f=2 \int_{-\infty}^{\infty} e^{-f} d f=2 \frac{e^{-f}}{-1} \right\rvert\,=2\left[1-e^{-\frac{1}{2}}\right]$
$\Rightarrow E\left[x^{2}(t)\right] \neq E\left[y^{2}(t)\right]$
$\Rightarrow E\left[y^{2}(t)\right] \neq 2$

40. Ans. A.
$\Delta \mathrm{P}=\Delta \mathrm{n}=\mathrm{G}_{\mathrm{Lo}}\left(1-\frac{\frac{L}{2}}{L}\right) \quad \mathrm{T}_{\mathrm{p}}=\mathrm{G}_{\mathrm{Lo}} \times \mathrm{T}_{\mathrm{p}}=10^{17} \times \frac{1}{2} \times 10^{-4}=\frac{1}{2} \times$
$10^{13} / \mathrm{cm}^{3}$
$\mid J_{p 1}$ diff $\mid=q D_{p}$
$\frac{d p}{d x}=1.6 \times 10^{-19} \times 100 \times \frac{\frac{1}{2} \times 10^{13}}{\frac{0.1 \times 10^{-4}}{2}}=16 \mathrm{~A} / \mathrm{cm}^{2}$
41. Ans. B.
$\mathrm{G}(\mathrm{s})=\frac{K}{\left(s^{2}+2 s+2\right)(s+2)}$
C.E $=s^{3}+s^{2}+76 s+4+k=0$

If system to stable
$24>k+4 \cap K+4>0$
$k>-4 \cap k<20$
(i) Stable condition $-4<k+20$

Means If $k=10$ system stable
$\mathrm{k}=100$ system unstable
Or $\mathrm{G}(\mathrm{j} \omega)=\angle \tan ^{-1}\left(\frac{\omega}{2}\right)-\tan ^{-1}\left(\frac{2 \omega}{2-\omega^{2}}\right)$
If $\omega \rightarrow 0 \mathrm{G}(\mathrm{j} \omega)=\frac{k}{4}<0$
$\omega \rightarrow \infty \mathrm{G}(\mathrm{j} \omega)=0 \angle-270$

So If $k=10$ touching point $=0.5$

If $k=100$ touching point $=5$
$N=P-Z$, Here $P=0$
$N=-Z$
If closed loop system to be stable, then $\Rightarrow \mathrm{z}=0, \mathrm{~N}=0$,
So, $k=0$ is stable system
42. Ans. A.
$\mathrm{I}_{\mathrm{B}}=\frac{(2-0.7)}{12 \times 10^{3}}=0.108 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{C}}=\frac{(5-0.2)}{4.8 \times 10^{3}}=1 \mathrm{~mA}$
$\boldsymbol{\beta}=\frac{\mathbf{I} c}{\mathbf{I}_{\mathbf{B}}}=\frac{1}{0.108}=9.259$
$\alpha=\frac{\beta}{1+\beta}=\frac{9.259}{1+9.259}=0.903$
43. Ans. A.
$\mathrm{PQ}=\sqrt{x^{2}+y^{2}}$ is the radius of variable circle at some Z .
$\Rightarrow p Q^{2}=x^{2}+y^{2}=z^{3}$ (Given)
\therefore Volume of region revolved around z-axis $=$

$$
\int_{0}^{1} \pi(P Q)^{2} d z=\int_{0}^{1} \pi z^{3} d z=\left.\pi \frac{z^{4}}{4}\right|_{0} ^{1}=\frac{\pi}{4}=0.79
$$

44. Ans. C.

Given the direction of propagation is
$\hat{a}_{x}-\hat{a}_{y}$
The orientation of \bar{E} field is $\hat{a}_{x}+\hat{a}_{y}+j 2 \hat{a}_{z}$
The dot product between above two is $=1-1+0=0$
\Rightarrow It is a plane wave
We observed that
$\bar{P}=\hat{a}_{x}-\hat{a}_{y}, \hat{a}_{x}+\hat{a}_{y}$ andj $2 \hat{a}_{z}$ are normal to each other.
So electric field can be resolved into two normal component along $\hat{a}_{x}+\hat{a}_{y}$ and j2 \hat{a}_{x}

The magnitude are $\sqrt{2}$ and 2 and $\theta=\frac{\pi}{2}$
So elliptical polarization.
45. Ans. D.

In given diagram

Prsent State		D_{A}	D_{B}	X_{in}	X_{in}	$\mathrm{X}_{\mathrm{m}}=0$ Next State		$\mathrm{X}_{\mathrm{m}}=1$ Next State	
					θ_{A}^{+}	θ_{B}^{+}	θ_{A}^{+}	θ_{B}^{+}	
00	0	1	0	1	0	1	0	1	
01	1	1	0	1	1	1	1	1	
11	0	1	0	1	0	1	0	0	
01	1	1	0	1	1	1	0	1	

When $X_{\text {in }}=02$ State
When $X_{\text {in }}=13$ State
46. Ans. B.

Fourier series coefficient a_{k} is unaffected by scaling operating. Thus (I) is true and (II) is false. $\mathrm{T}=1 \mathrm{sec}$ for $\mathrm{x}(\mathrm{t})$ and if it compressed by ' 3 ' then the resultant period $\mathrm{T}=\frac{1}{3}$
\therefore Fundamental frequency $=\frac{2 \pi}{T_{1}}=6 \pi \mathrm{rad} / \mathrm{sec}$.
Thus (III) is correct.
47. Ans. A.

CLK	A	B	C	D	
	$\mathrm{D}_{\text {in }}=\mathrm{A} \oplus \mathrm{B}$	$\mathrm{A} \rightarrow \mathrm{B}$	$\mathrm{B} \rightarrow \mathrm{C}$	$\mathrm{C} \rightarrow \mathrm{D}$	
0	1	1	0	1	\rightarrow initial state
1	0	1	1	0	
2	0	0	1	1	
3	1	0	0	1	
4	0	1	0	0	
5	0	0	1	0	
6	0	0	0	1	
7	1	0	0	0	
8	1	1	0	0	
9	1	1	1	0	
10	1	1	1	1	\rightarrow Final state

10 clock pulse required.
48. Ans. C.

We have series of $f(x)$ around $x=0$ is $f(x)=$
$f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)$
(upto powers of „x" less than or equal to „3")
Given
$f(x)=e^{x+x^{2}} \Rightarrow f(0)=1$
$f^{\prime}(x)=e^{x+x^{2}}(1+2 x) \Rightarrow f^{\prime}(0)=1$
$f^{\prime \prime}(x)=e^{x+x^{2}}(1+2 x)+2 e^{x+x^{2}} \Rightarrow f^{\prime \prime}(0)=3$
$f^{\prime \prime \prime}(x)=e^{x+x^{2}}(1+2 x)^{3}+e^{x+x^{2}} 4(1+2 x)+2(1+2 x) e^{x+x^{2}}$
$\Rightarrow f^{\prime \prime \prime}(0)=7$
$\therefore \mathrm{f}(\mathrm{x})=e^{x+x^{2}}$
$=1+x \cdot 1+\frac{x^{2}}{2!}(3)+\frac{x^{3}}{3!}(7)=1+x+\frac{3}{2} x^{2}+\frac{7}{6} x^{3}$
49. Ans. B.

MVI A, $33 \mathrm{H} A \leftarrow 33 \mathrm{H}$
MVI B, $78 \mathrm{H} B \leftarrow 78 \mathrm{H}$
ADD $B \mathrm{~B} \leftarrow \mathrm{ABH}$
CMA A $\leftarrow 54 \mathrm{H}$
ANI 32H A $\leftarrow 10 \mathrm{H}$
$\mathrm{A} \rightarrow 00110011 \mathrm{~A} \rightarrow 10101011$
$\mathrm{B} \rightarrow 01111000 \mathrm{~B} \rightarrow 01010100$
10101011
01010100
00110010
$\overline{00010000}$
50. Ans. A.

Under dc condition inductor acts as short all
$\therefore \mathrm{I}_{\text {total }}=\frac{15}{1}=15 \mathrm{~A}$
$i(t)=\left(i\left(0^{-1}\right)-i(\infty) e^{-\frac{t}{2}}+i(\infty) i\left(0^{-}\right)=i\left(0^{+}\right)=0 A\right.$
$i(t)=(0-15) e^{-\frac{3}{2} t}+15$
$\mathrm{I}_{\text {total }}=$
$\frac{I_{\text {total }}}{3}=\frac{15}{3}\left(1-e^{-\frac{3}{2} t}\right)$
$2=5\left(1-e^{-\frac{3}{2} t}\right) \Rightarrow \mathrm{t}=0.34 \mathrm{sec}$

51. Ans. A.

The null occurs along axis of the antenna which is $\theta=90^{\circ}$, $\emptyset=45^{\circ}$
52. Ans. A.

Given Amplifier is using -ve feed back
$A_{f}=\frac{A_{0}}{1+A_{0} \beta}$
$\beta=\frac{1}{80} ; A_{0}=10^{5}$

$$
\begin{aligned}
& A_{f}=\frac{10^{5}}{1+10^{5} / 8}=79.93 \\
& f_{\text {cut }}=8 \mathrm{~Hz} \times\left(1+A_{0} \beta\right)=10008 \mathrm{~Hz}
\end{aligned}
$$

$$
A_{f}(\omega)=\frac{A_{f}}{\sqrt{1+\left(f / f_{\text {cut }}\right)^{2}}}
$$

$$
=\frac{79.93}{\sqrt{1+\left(\frac{15 \times 10^{3}}{10008}\right)^{2}}}
$$

$$
=44.3
$$

53. Ans. A.

It is given that,
$\mathrm{H}[0]=\frac{1}{3} ; h[1]=\frac{1}{3} ; h[2]=\frac{1}{3} \&$
$H[n]=0$ for $n<0$ and $n>2$.
$\therefore \mathrm{h}[\mathrm{n}]=\mathrm{h}[0] \delta[\mathrm{n}]+\mathrm{h}[1] \delta[\mathrm{n}-1]+\mathrm{h}[2] \delta[\mathrm{n}-2]$
$=\frac{1}{3}[\delta[n]+\delta[n-1]+\delta[n-2]]$
Apply DTFT on both sides,
$\therefore \mathrm{H}(\omega)=\frac{1}{3}\left[1+e^{-j \omega}+e^{-2 j \omega}\right]$
Given that $\mathrm{H}\left(\omega_{0}\right)=0 \& 0<\omega_{0} .<\pi$
$\Rightarrow H\left(\omega_{0}\right)=0 \& 0<\omega_{0}<\pi$
$\Rightarrow H\left(\omega_{0}\right)=\frac{1}{3}\left[1+e^{\frac{-3 j \omega_{0}}{2}}\left(e^{\frac{-j \omega_{0}}{2}}+e^{\frac{j \omega_{0}}{2}}\right)\right]=0$
$\therefore 1+2 e^{-3 j \omega_{0}} \cos \frac{\omega_{0}}{2}=0$
Consider $\left|\mathrm{H} \omega_{0}\right| \Rightarrow \cos \frac{\omega_{0}}{2}=\frac{1}{2}$
$\therefore \omega_{0}=\frac{2 \pi}{3}$
$\omega_{0}=2.094$
54. Ans. B.
$F=M_{0}+M_{1}+M_{2}+M_{3}+M_{5} \rightarrow$ min term

55. Ans. A.

Given: $(\mathrm{t})=\left\{\begin{array}{cl}\frac{2 \sin (300 \pi t)}{\pi t} & t \neq 0 \\ 600 & t=0\end{array}\right\}$
Thus $h(t)=600 \sin \mathrm{c}(300 \mathrm{t})$
$\therefore \mathrm{H}(\mathrm{f})=2 \operatorname{rect}\left(\frac{f}{300}\right)$
Given $x(t)=4 \cos 200 n t+800 \cos 400 n t$
In f -domain
$X(f)=2[\delta(f-100)+\delta(f+100)]+4[\delta(f-200)+\delta(f+200)]$

