1. Ans. C.

In degrees of comparison Mr . X is taller than Mr . Y is apt.
Positive degree - tall
Comparative degree - taller
Superlative degree - tallest
2. Ans. B.

Felicitate means honor
3. Ans. C.
'rest is history' is an idiomatic expression which means 'rest is well known
4. Ans. C.
$(9 \text { inches })^{1 / 2}=(0.25 \text { yards })^{1 / 2}$
Squaring on both sides
9 inches $=0.25$ yards
5. Ans. B.

M efficiency $=2$ [efficiency of S, E, and F]
Contribution of M in the project $=x$ days $\times 6$ hrs. $\times 2$
Contribution of E in the project $=2 x$ days $\times 12$ hrs. $\times 1$
Contribution of M: Contribution of E
$x \times 6 \times 2: 2 x \times 12 \times 1$
1:2
6. Ans. D.

From Venn diagram
$n(A)=$ no of persons reading books $=13+44+12+7$
$=76$
$n(B)=$ no of persons playing $=15+44+7+17=83$
$n(A \cap B)=51$
$n(A \cup B)=n(A)+n(B)-n(A \cap B)=76+83-51=108$
7. Ans. A.

Until the colonial period means pre-colonial origin. Other options can't be inferred.
8. Ans. D.

If reflection is seen as

1:30
Actual Will Be

10:30
Thus, present time will be 10: $30+2: 15=12: 45$
9. Ans. C.

$\cos 45^{\circ}=\frac{\mathrm{DE}}{4}$
$\mathrm{DE}=\cos 45^{\circ} \times 4$
$=2.828 \mathrm{~km}$
$\sin 45^{\circ}=\frac{\mathrm{EN}}{4}$
$\mathrm{EN}=\sin 45^{\circ} \times 4=2.828 \mathrm{~km}$
$\sin 45^{\circ}=\frac{\mathrm{EN}}{4}$
$\mathrm{EN}=\sin 45^{\circ} \times 4=2.828 \mathrm{~km}$
$\mathrm{CN}=\mathrm{NE}+\mathrm{CE}=2.828+5$ $=7.828 \mathrm{~km}$
$\mathrm{CB}=\mathrm{AB}-\mathrm{AC}=10-2.828$
$=7.171 \mathrm{~km}$
$(N B)^{2}=(N C)^{2}+(B C)^{2}$
$=(7.828)^{2}+(7.171)^{2}$
$\therefore \mathrm{NB}=\sqrt{(7.828)^{2}+(7.171)^{2}}=10.616 \mathrm{~km}$
$\therefore \mathrm{NM}=\mathrm{NB}+\mathrm{BN}=10.616+10=20.61 \mathrm{~km}$
10. Ans. B.

Perimeter of rectangle
$=2\left[\frac{x}{3}+\frac{2 x}{3}\right]=2 x$
Perimeter of square $=340-2 x$
Length of square $=\frac{340-2 x}{4}$
Total area $=\left(\frac{340-2 x}{4}\right)^{2}+\frac{2}{9} x^{2}=f(x)$
$f^{\prime}(x)=\frac{4}{9} x-\frac{2 x-340}{4}=0$
$\Rightarrow \frac{4}{9} x=\frac{1}{4}(340-2 x) \Rightarrow x=90$
Length of square $=\frac{340-2 x}{4}=40 \mathrm{~mm}$

Square

Rectangle
11. Ans. B.

One of the Eigen values zero implies determinant of matrix is also zero.
From the matrix A, we can see that for determinant to be zero,
Row 1 and Row 3 can be made same.

$$
\begin{aligned}
& \Rightarrow \frac{-9+x}{2}=-4 \\
& \Rightarrow x=1
\end{aligned}
$$

12. Ans. A.
$\operatorname{letf}(z)=u+i v$
$2 z^{3}+b|z|^{3}=u+i v$
$\Rightarrow 2(x+i y)^{3}+b\left(x^{2}+y^{2}\right)^{3 / 2}=u+i v$
$\Rightarrow 2\left(x^{3}+3 x^{2} i y-3 x y^{2}-i y^{3}\right)$
$+b\left(x^{2}+y^{2}\right)^{3 / 2}=u+i v$
$\Rightarrow u=2\left(x^{3}-3 x y^{2}\right)+b\left(x^{2}+y^{2}\right)^{3 / 2}$
$v=6 x^{2} y-2 y^{3}$
$\frac{\partial u}{\partial x}=6 x^{2}-6 y^{2}-3 b x\left(x^{2}+y^{2}\right)^{1 / 2}$
$\frac{\partial v}{\partial x}=-12 x y+3 b y\left(x^{2}+y^{2}\right)^{1 / 2}$
$\frac{\partial u}{\partial x}=12 x y \frac{\partial v}{\partial x}=6 x^{2}-6 y^{2}$
$f(z)$ isanalytic $\Rightarrow \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial x}$
$C-R$ equations hold for only $b=0$
13. Ans. B.

We can plot for various valve of x

$f(x)$ increases, decreases and again increases.
14. Ans. C.
let $y=\sin x, y=x / 2$ be two curves
The solutions of $\sin (x)=x / 2$ are intersected points of two curves $y=\sin x$ and $y=x / 2$

Therefore, three points they are intersecting.
15. Ans. A.
$15 \cos (\omega t) x+5 \sin (\omega t) y$,
The minimum magnitude will be 5
At '5' magnitude angle is 90°.

16. Ans. B.

Under maximum power transfer condition, half of V_{th}, is dropped across R_{th} and remaining $-\frac{V_{t h}}{2}$ dropped across load.
\rightarrow So, we can say under MPT $\frac{V_{s}}{2}$ will appear on the load
so $I_{L}=\frac{V_{s}-\frac{V_{s}}{2}}{R}=\frac{V_{s}}{2 R}$
17. Ans. D.
\rightarrow At $t=\overline{0}$ switch in position 1 and since the capacitor is open circuited
$V_{c}(\overline{0})=\frac{2}{2+3} 10=4 V$
\rightarrow At $t=$ infinity switch is in position 2 and since capacitor is open circuited
$V c(\infty)=(5) 2=10 V$
\rightarrow Time constant

$$
\begin{aligned}
& t=R_{t h} C=(4+2) 0.1=0.6 \mathrm{sec} \\
& \rightarrow V_{c}(t)=V_{c}(\infty)+\left[V_{c}(0)-V_{c}(\infty)\right] e^{-t / \tau} \\
& =10+[4-10] e^{-t / 0.6}=10-6 e^{-t / 0.6}
\end{aligned}
$$

18. Ans. A.

At resonance,
$\frac{\left|I_{L}\right|}{\left|I_{R}\right|}=\frac{Q I_{L}}{I_{m}}=Q$
For parallel circuits $Q=R \sqrt{\frac{C}{L}}=10 \sqrt{\frac{10 \times 10^{-6}}{10 \times 10^{-3}}}$ $=0.316$
19. Ans. B.
$Z_{\text {matrix }}\left[\begin{array}{cc}Z_{a}+Z_{c} & Z_{c} \\ Z_{c} & Z_{b}+Z_{c}\end{array}\right]$
$Z_{b}+Z_{c}=3+2 j \omega$
$Z_{c}=j \omega$
$\Rightarrow Z_{b}=3+j \omega$
$\Rightarrow R_{b}=3$
20. Ans. C.
$x(t)=\frac{\sin (4 \pi t)}{(4 \pi+1)} \stackrel{F \cdot T}{\leftrightarrow}$
Energy (using Parsvals identity)

$\Rightarrow \int_{-2}^{2}\left(\frac{1}{4}\right)^{2} d f=0.25$
21. Ans. D.

Ebers-Moll model of a BJT is valid in active, saturation and cut-off modes.
22. Ans. D.
$R_{o n}=\frac{1}{k_{n}\left(V_{G S}-V_{t}\right)}$
$k_{n}=\mu_{n} c_{o x} \cdot \frac{W}{L}$
so, $R_{o n}=\frac{L}{\mu_{n} c_{o x} \cdot L\left[V_{G S}-V_{t}\right]}$
23. Ans. A.

Diode is the OFF state
$I_{2}=\frac{8}{8 k}=0.25 \mathrm{~mA}$
24. Ans. A.
$I_{1}=I_{x} e^{\frac{V_{B E}}{V_{T}}}=I s e 25 m$,
$1 m=I_{s} e^{\frac{0.7}{25 n n}}, V_{t}=25 m$
$I_{S}=6.914 \times 10^{-16}$
$1_{2}=I_{s} e^{\frac{0.7-I_{2} R_{2}}{25 m v}}$
$\frac{0.7-I_{2} R_{2}}{25 m v}=25.6925 \mathrm{~m}$
$I_{2} R_{2}=0.057$
$R_{2}=575.6 \Omega$
25. Ans. A.

The parasitic capacitances are in PF and the coupling and bypass capacitors are in $\mu \mathrm{F}$. Therefore, for the mid frequency band, parasitic capacitance act like open circuits and coupling and bypass capacitances act like short circuits.
26. Ans. C.

Width of PMOS transistors should be halved. while width of NMOS transistors should not be changed, because NMOS transistors are in parallel. If anyone transistor ON, output goes to LOW.
27. Ans. D.

The waveform at OR gate output, Y is $[\mathrm{A}=+5 \mathrm{~V}]$

$$
\begin{aligned}
& \text { Average power } \\
& \qquad \begin{aligned}
& P=\frac{V_{A 0}^{2}}{R}=\frac{1}{R}\left[\sum_{T_{1} \rightarrow \infty}^{L_{1}} \frac{1}{T_{1}} \int_{0}^{T_{1}} y^{2}(t) d t\right] \\
& P=\frac{1}{R T_{1}}\left[\int_{T}^{2 T} A^{2} d t+\int_{3 T}^{5 T} A^{2} d t\right]=\frac{A^{2}}{R_{1}}[(2 T-T)+(5 T-3 T)]=\frac{A^{2} .3 T}{R(5 T)}=\frac{5^{2} .3}{10 \times 5}=1.5 \mathrm{mw}
\end{aligned}
\end{aligned}
$$

28. Ans. A.

A	B	$\mathrm{C}_{\text {in }}$	$\mathrm{C}_{\text {out }}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\Rightarrow I_{0}(A=0, B=0)=0$
$I_{1}\left(A_{0}=0, B=1\right)=C_{\text {in }}$
$I_{2}\left(A_{0}=1, B=0\right)=C_{\text {in }}$
$I_{3}\left(A_{0}=1, B=1\right)=1$

29. Ans. B.

$G(s)=\frac{s-2}{(s+1)(s+3)}=\frac{-3}{2(s+3)}+\frac{5}{2} \frac{1}{s+3}$
$\frac{d y(t)}{d x}=g(t)=\frac{-3}{2} e^{-t}+\frac{5}{2} e^{-3 t}$
$\left.\frac{d y(t)}{d x}\right|_{t=0^{-1}}=\frac{5}{2}-\frac{3}{2}=1$
30. Ans. A.
$G(j \omega)=\frac{1-j \omega}{4+2 j \omega}$
$\omega=0,|G j \omega|=0.25, \angle G(j \omega)=0$
$\omega=\phi \infty,|G(j \omega)|=0.5, \angle G(j \omega)=-180^{\circ}$

$N=0$
31. Ans. A.

The minimum average code word length is also equal to Entropy of source.
$H(s)=\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4$
$+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8=1.75$ bits
32. Ans. B.

Data rate $=r_{b}=64 \mathrm{kbps}$
$M=4$
Minimum bandwidth $=\frac{1}{2 T}=16 \mathrm{KHZ}$
$T=T_{b} \cdot \log _{2}{ }^{\mathrm{M}}=\frac{1}{64 \times 10^{3}} \cdot 2-\frac{1}{32 \times 10^{3}}$
33. Ans. A.

Force due to B on q is
$F=q(V \times B)=q\left[V_{x} V_{n}\right](-y)$
\Rightarrow Helical motion in z-direction.

34. Ans. D.

Option A.: The polarization is linear Option B.: $V_{g}=\frac{C}{V_{P}}$
Option C.: $V_{p}=\frac{\omega}{\beta}$
Option D.: It is not possible to find the intrinsic impedance of the medium. So, it is not possible to find power flux.
35. Ans. B.
$\theta_{i}=\sin ^{-1} \sqrt{n_{2}^{2}-n_{1}^{2}}=\sin ^{-1} \sqrt{(1.5)^{2}-(1.4)^{2}}$
$=32.58$
36. Ans. A.
$\frac{d y}{d x}=-3 y+2, \quad y(0)=1$
If $|1-3 \mathrm{~h}|<1 \quad$ then solution of differential equation is stable
$\Rightarrow-1<1<-3 \mathrm{~h}<1$
$\Rightarrow-2<-3 \mathrm{~h}<0$
$\Rightarrow 0<3 \mathrm{~h}<2$
$\Rightarrow 0<\mathrm{h}<\frac{2}{3}$
\therefore If $0<\mathrm{h}<0.66$ then we get stable
37. Ans. B.

By Green's theorem

$$
\begin{aligned}
& \oint M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& \oint\left(x y^{2} d x+x^{2} y d y\right)=\iint_{R}(2 x y-2 x y) d x d y=0
\end{aligned}
$$

38. Ans. A.
$P\{x+y \leq 1\}$
$=P\{x \leq 1-y\}$
$=\int_{0}^{1} \int_{0}^{1-x} f_{x y}(x, y) d x d y$
$=\int_{0}^{1}\left\{\int_{0}^{1-x}(x, y) d x\right\} d y$
Solving we get
$P\{x+y \leq 1\}=1 / 3=0.333$
39. Ans. C.

Solving for determinant
$a b=10$
Solving for trace (Sum of diagonal elements)
$a+b=7$
$\Rightarrow a=5, b=2$
or
$a=2, b=5$
$\Rightarrow|a-b|=3$
40. Ans. D.

Let assume all resistance as R, then by using start-delta transformation

41. Ans. A.

Let current through
$R_{1}=I$.
$\Rightarrow I+0.04 V_{x}=\frac{V_{x}}{5}$
$\Rightarrow I=\frac{V_{x}}{5}-\frac{V_{x}}{25}=\frac{4 V_{x}}{25}$
Applying KVL,
$60=\frac{4 V_{x}}{25} \times 5+8 \times \frac{V_{x}}{5}$
$60=\frac{12 V_{x}}{5} \Rightarrow V_{x}=25$
Thus, current through $R_{L}=\frac{25}{5}=5 \mathrm{amps}$

42. Ans. A.

Given $H(s)=\frac{2 s+6}{s^{2}+6 s+8}$
So,
$z=e^{-s T} s,=6$ givenf $_{s}=2, J_{T}=0.5$
$H(s)=\frac{2 s}{(s+4)(s+2)}$
$H(s)=\frac{1}{s+2}+\frac{1}{s+4}$
$H(z)=\frac{1}{1-e^{-2 T_{s}} z^{-1}}+\frac{1}{1-e^{-4 T_{s}} z^{-1}}$
$=\frac{1}{1-e^{-1} z^{-1}}+\frac{1}{1-e^{-2} z^{-1}}$
$=\frac{\left[1-e^{-2} z^{-1}\right]+1-e^{-1} z^{-1}}{1-z^{-1}\left[e^{-1}+e^{-2}\right]+e^{-3} z^{-2}}$
$=\frac{2-z^{-1}\left[e^{-1}+e^{-2}\right]}{1-z^{-1}\left[e^{-1}+e^{-2}\right]+e^{-3} z^{-2}}$
$=\frac{2 z^{2}-z\left(e^{-1}+e^{-2}\right)}{z^{2}-z\left[e^{-1}+e^{-2}\right]+e^{-3}}$
So, $k=0.0497$
43. Ans. A.

Given, $x[1]=[3,2,3,4]$
We can directly find the DFT of given sequence
$x_{1}[n]=\{3,0,0,2,0,0,3,0,0,4,0,0\}$
$X_{1}(k)=[12,2 j, 0,-2 j, 12,2 j, 0,-2 j, 12,2 j, 0,-2 j]$ DFT
repeats itself
$X_{1}(8)=12$
$X_{1}(11)=-2 j$
$\Rightarrow \frac{\left|X_{1}(8)\right|}{\left|X_{1}(11)\right|}=6$
44. Ans. A.
$\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{10}{1}=10 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$
$\mathrm{v}_{\mathrm{c}}\left(0^{-}\right)=0 \mathrm{v}=\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)$
For diode, $\mathrm{R}_{\mathrm{r}}=\infty \Omega$ and $\mathrm{R}_{\mathrm{f}}=0 \Omega$ (given)

For $\mathrm{t} \geq 0$
Transform the above network in Laplace domain

Nodal $\Rightarrow \frac{10}{5}+\frac{\mathrm{v}(\mathrm{s})}{\mathrm{sL}}+\frac{\mathrm{v}(\mathrm{s})}{\frac{1}{\mathrm{sc}}}=0$
$\Rightarrow \mathrm{v}(\mathrm{s})=\frac{-10 \mathrm{~L}}{\mathrm{~s}^{2} \mathrm{LC}+1}$
$=v(s)=-10 \mathrm{~L} \cdot \frac{1}{\sqrt{\mathrm{LC}}} \cdot \frac{\frac{1}{\sqrt{\mathrm{LC}}}}{s^{2}+\frac{1}{\mathrm{LC}}}$
$\left.=-10 \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} \cdot \frac{\omega_{\mathrm{n}}}{\mathrm{s}^{2}+\omega_{\mathrm{n}}^{2}} \right\rvert\,$ where $\omega_{\mathrm{n}}^{2}=\frac{1}{\mathrm{LC}}$
$\Rightarrow \mathrm{v}(\mathrm{t})=-10 \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} \sin \omega_{\mathrm{n}} \mathrm{t} \quad$ for $0 \leq \mathrm{t} \leq \infty$
Where $\omega_{\mathrm{n}}=\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{sec}$
$\Rightarrow \mathrm{v}(\mathrm{t})=-100 \sin 10^{4} \mathrm{t}$ for $0 \leq \mathrm{t} \leq \infty$
By KVL $\Rightarrow \mathrm{v}(\mathrm{t})+\mathrm{v}_{\mathrm{c}}(\mathrm{t})=0$
$\Rightarrow \mathrm{v}_{\mathrm{c}}(\mathrm{t})=-\mathrm{v}(\mathrm{t})$
$=100 \sin (10000 \mathrm{t}) \mathrm{V}$ for $0 \leq \mathrm{t} \leq \infty$

So, $\mathrm{v}_{\mathrm{c}}=100 \angle-90 \mathrm{v}$
$\Rightarrow\left|\mathrm{v}_{\mathrm{c}}\right|=100 \mathrm{v}$
$Q_{i n v}=k\left(V_{G S}-V_{t}\right), V_{G S}>V_{t}$
$\left|Q_{i n v}\right|=q N_{i}$
$q N_{i}=k\left(V_{G S}-V_{t}\right)$
Given
Case (i)
$q\left(2 \times 10^{11} \mathrm{~cm}^{-2}\right)=k\left(0.8-V_{t}\right)$
Case (ii)
$q\left(4 \times 10^{11} \mathrm{~cm}^{-2}\right)=k\left(1.3-V_{t}\right)$
$2=\frac{1.3-V_{t}}{0.8-V_{t}}$
$1.6-2 V_{t}=1.3-V_{t}$
$V_{t}=0.3$
So, $k=\frac{2 \times 10^{11}}{0.5} \times 1.6 \times 10^{11}$
So, $1.6 \times 10^{11} \times N_{i}=4 \times 10^{11} \times 1.6 \times 10^{-19}(1.5)$
$N_{i}=6 \times 10^{11} \mathrm{~cm}^{-2}$
46. Ans. C.

If the depletion region is not making any change it means
$N_{D} \times V_{B R}=$ constant
47. Ans. A.
$\frac{d E}{d x}=\frac{q N_{D}}{\varepsilon} \Rightarrow \frac{50 \times 10^{3}}{L}=\frac{1.6 \times 10-19 \times 10^{17}}{8.854 \times 10^{-14} \times 11.7}$
$L=\frac{50 \times 10^{3} \times 8.854 \times 10^{-14} \times 11.7}{1.6 \times 10^{-2}}$
$=32.372 \times 10^{-9} \mathrm{~m}$
48. Ans. A.

From given conditions $V_{D S} \leq V_{G S}-V_{t}$, So transistor is linear
$I_{D}=k_{n}\left[\left(V_{G S}-V_{t}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]$
$\frac{\partial I_{D}}{\partial V_{G S}}=k_{n} \cdot V_{D S}$
$k=\frac{0.5 \times 10^{6}}{50 \times 10^{-3}}=\frac{1}{100} \times 10^{-3} \times 10^{-5} \mathrm{~A} / v^{2}$
So, $\frac{\partial I_{D}}{\partial V_{G S}}=k_{n}\left(V_{G S}-V_{t}\right)$
$8 \times 10^{-6}=10^{-5}\left[2-V_{t}\right]$
$V_{t}=2-0.8=1.2 \mathrm{~V}$
49. Ans. A.

Peak -to-peak ripple voltage
45. Ans. B.

$$
V_{r p p}=\frac{I_{L}}{f_{c}}=\frac{I_{L} T}{C}=\frac{1 \times 1 \times 10^{-3}}{475 \times 10^{-6}}=2.1 \text { volt }
$$

50. Ans. A.

For $\mathrm{t}<0$ switch is closed
$V_{(-)}=10 \mathrm{~V}$
$V_{(+)}=\frac{1}{1+4}(-5)=-1 V$
For $t \geq 0$ the capacitor charges through $10 k \Omega$ the switching will occur. When $V_{(-)}<-1$ volt equivalently, the switching will occur. When V_{c} becomes slightly more than 11V
$V_{c}(t)=20 e^{\frac{-t}{R C}}$
$t_{1}=20 e^{\frac{-t}{R C}}$
$t_{1}=R C \operatorname{In}\left(\frac{20}{9}\right)=(1) \operatorname{In}\left(\frac{20}{9}\right)$
$t_{1}=0.789 \mathrm{sec}$
51. Ans. A.

The gain of the practical op-amp
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\left(1+\frac{R_{f}}{R_{1}}\right)}{\left[1+\frac{\left(1+\frac{R_{f}}{R_{1}}\right)}{A_{02}}\right]}$
$\left(1+\frac{R_{f}}{R_{1}}\right)=16, A_{02}=100$
$V_{\text {out }}=\left[\frac{1+\frac{R_{f}}{R_{1}}}{\left(1+\frac{R_{f}}{R_{1}}\right)}\right]\left[V_{\text {in }}+V_{\text {ios }}\right]$
$=\frac{16}{1+\frac{16}{100}}[25+5]$
$=413.79 \mathrm{mV}$
52. Ans. A.

Address varying from 1000 H to 2FFFH
i.e.

0001000000000000 H

0010111111111111 H

$$
\begin{aligned}
& \overline{C S}=\left(\overline{A_{14}} \overline{A_{15}} \cdot \overline{A_{13}} A_{12}+\overline{A_{14}} \overline{A_{15}} \cdot \overline{A_{12}} A_{13}\right) \\
& =A_{14}+A_{15}+\left(A_{13} \cdot A_{12}+\overline{A_{13}} \cdot A_{12}\right)
\end{aligned}
$$

53. Ans. A.
$\mathrm{V}_{\mathrm{in}}^{1}=\frac{\mathrm{V}_{\text {in }}}{\mathrm{RC}_{\text {eq }}} \mathrm{T}$

$\mathrm{V}_{\text {in }}^{1}$ has to settle down within $\frac{1}{2}$ LSB of full scale value.

$$
\begin{array}{r}
\text { i.e } \frac{509}{510} \mathrm{~V}_{\text {in }}=\frac{\mathrm{V}_{\text {in }} \mathrm{T}}{75 \times\left(255 \times 8 \times 10^{-12}\right)} \Rightarrow \mathrm{T}=\left(75 \times 255 \times 8 \times 10^{-2}\right) \times \frac{509}{510} \\
\mathrm{~T} \approx 0.15 \mu \mathrm{sec}
\end{array}
$$

Thus sample period $\mathrm{T}_{\mathrm{s}} \geq \mathrm{T}$

$$
\mathrm{T}_{\mathrm{s}} \geq 0.15 \mathrm{~m} \mathrm{sec}
$$

$\mathrm{f}_{\mathrm{s}}, \max =\frac{1}{\mathrm{Ts}_{\text {, min }}}=\frac{1}{0.15 \times 10^{-6}} \mathrm{~Hz} \approx 6$ Megasamples
54. Ans. C.

From the state diagram we can derive the state table. It is given that the binary inputs are $X Y Z$ so if in any transition some value of input is missing, it should be considered as don't care combination.

Present State	X	Y	Z	Next State
A	0	0	0	B
A	1	0	X	C
A	0	X	1	A
A	X	1	X	A
B	X	0	0	A
B	X	1	X	B
C	X	0	1	C
C	X	X	0	C
C	1	X	1	A

Conclusion

Let us consider the two row of present state A, what it means is
\(\left.\begin{array}{ccccc}0 \& \mathrm{X} \& 1 \& \longrightarrow \& \mathrm{~A}

0 \& 0 \& 1 \& \longrightarrow \& \mathrm{~A}

0 \& 1 \& 1 \& \longrightarrow \& \mathrm{~A}

\mathrm{X} \& 1 \& \mathrm{X} \& \longrightarrow \& \mathrm{A}

0 \& 1 \& 0 \& \longrightarrow \& \mathrm{~A}

0 \& 1 \& 1 \& \longrightarrow \& \mathrm{~A}

1 \& 1 \& 0 \& \longrightarrow \& \mathrm{~A}

1 \& 1 \& 1 \& \longrightarrow \& \mathrm{~A}\end{array}\right\}\)| So, no ambiguity |
| :--- |
| as each distinct state |

Similar way if we check all row, let in present state C case
$X \quad X \quad 0 \rightarrow C$
(a) $0 \quad 0 \quad 0 \rightarrow V$
$0 \quad 1 \quad 0 \rightarrow V$
$1 \quad 0 \quad 0 \rightarrow V$
$1 \quad 1 \quad 0 \rightarrow V$

$1 \quad X \quad 1 \rightarrow A$
c. $1 \quad 0 \quad 1 \rightarrow A$
$1 \quad 1 \quad 1 \rightarrow A$
So, transition from state C is ambiguous
55. Ans. B.

Minimum setting time and no overshoot implies case of critical damping.
At critical damping $\zeta=1$.
$H(s)=\frac{k}{\left(s^{2}+2 s+k\right)}$
$\omega_{n}=\sqrt{k}$
$2 \zeta \omega_{k}=2 \Rightarrow 2.1 \times \sqrt{k}=2 \Rightarrow k=1$
56. Ans. C.

The given condition implied marginal stability. One alternative way without going for gain margin, phase margin concepts is find k value for marginal stability using reflection.
$C . E:-S^{3}+11 s^{2}+6 s+6 k=0$

$$
\begin{array}{l|cc}
S^{3} & 1 & 6 \\
S^{2} & 11 & 6+k \\
S^{1} & \frac{60-k}{11} \\
S^{0} & 6+k
\end{array}
$$

For marginal stability odd order row of S should be zero. i.e.,

$$
\frac{60-k}{11}=0 \Rightarrow k=60
$$

57. Ans. A.

Since it is the phase plot given we can't use the slope concept as these are nonlinear curves. So we can take any phase angle of at a given frequency as reference and can obtain P_{1}
\rightarrow Phase of transfer function
$\phi(\omega)=-\tan ^{-1}\left(\frac{\omega}{0.1}\right)-\tan ^{-1}\left(\frac{\omega}{10}\right)-\tan ^{-1}\left(\frac{\omega}{P_{1}}\right) \rightarrow$ Form
the plot at $\omega=0.1, \phi=-45^{\circ}$

$$
-45^{\circ}=-\left[\tan ^{-1} \frac{0.1}{0.1}+\tan ^{-1} \frac{0.1}{10}+\tan ^{-1} \frac{0.1}{P^{1}}\right]
$$

Solving for P, we get $P_{1}=1$.
58. Ans. A.

The Auto correlation function is

$$
\mathrm{R}_{\mathrm{b}}(\tau)=\left\{\begin{array}{cc}
1+\mathrm{k}^{2} & \tau=0 \\
\mathrm{k} & \tau= \pm 3 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Power spectral density
$\mathrm{S}_{\mathrm{b}}(\mathrm{f})=1+\mathrm{k}^{2}+2 \mathrm{k} \cos (2 \pi \mathrm{f} 3 \mathrm{~T})$
Null will occur at $\mathrm{f}=\frac{1}{3 \mathrm{~T}}$
So at $\mathrm{f}=\frac{1}{3 \mathrm{~T}} \Rightarrow \mathrm{~S}_{\mathrm{b}}(\mathrm{f})=1+\mathrm{k}^{2}+2 \mathrm{k} \cos 2 \pi\left(\frac{1}{3 \mathrm{~T}}\right) \times 3 \mathrm{~T}=0$
$\Rightarrow 1+\mathrm{k}^{2}+2 \mathrm{k}=0$
$\Rightarrow(\mathrm{k}+1)^{2}=0$
$\Rightarrow \mathrm{k}=-1$
59. Ans. A.

Transmission Bandwidth $=1500 \mathrm{~Hz}$.
$B_{T}=R_{s}(1+\alpha)$
$R_{s}=\frac{4800}{\log _{2} M}, M=16$
$\Rightarrow R_{s}=1200$ symbols / sec
$1500=1200[1+\alpha] \Rightarrow \alpha=1.25-1=0.25$
60. Ans. B.
$x(t)=3 V(t)-8$,

$$
\begin{aligned}
& R_{x}(t)=E[x(t) \times(t+\tau)] \\
& =E(3 v(t)-8)(3 v(t+\tau)-8)] \\
& =E[(9 v(t) v(t+\tau)-24 v(t)-24 v(t+\tau)+64] \\
& =9 R_{v}(\tau)-48 E[v[t]+64 \\
& P_{x}(\tau)_{\tau=0}=\text { Power in } X(t)=9 R_{v}(0)+64 \\
& =36+64=100 \mathrm{w}
\end{aligned}
$$

61. Ans. B.

Given Binary communication channel Information content in receiving y it in given that x_{0} is transmitted is

$$
\begin{aligned}
& H\left(y / x_{0}\right)=P\left(y_{0} / x_{0}\right) \log _{2} \frac{1}{P\left(y_{0} / x_{0}\right)} \\
& +P\left[y_{1} / x_{0}\right] \log _{2} \frac{1}{P\left(y_{1} / x_{0}\right)} \\
& =\frac{3}{4} \log _{2} \frac{4}{3}+\frac{1}{4} \log _{2} 4=0.811
\end{aligned}
$$

62. Ans. A.

If capacitor is electrically isolated then charge is same
We know $C_{1} d_{1}=C_{2} d_{2}$ and $\frac{C_{1}}{V_{2}}=\frac{C_{2}}{V_{2}}$
If ' d ' is doubled then C will be $\mathrm{C} / 2$ and V will be 2 V Given
$E=\frac{1}{2} C V_{2} \Rightarrow E_{\text {new }}=\frac{1}{2} \cdot \frac{C}{2} \times(2 V)^{2}$
$=2 \times \frac{1}{2} C V^{2}=2 E$
63. Ans. A.

According to question correct answer would be A
64. Ans. A.

$Z_{\mathrm{L}}=50 / /-\mathrm{j} 50 \cot \beta \ell_{\mathrm{o}_{\mathrm{c}}}$
$|\Gamma|=\left|\frac{Z_{2}-Z_{01}}{Z_{2}+Z_{0}}\right|=0$ only when $Z_{L}=Z_{o_{1}}$
$50 / /-\mathrm{j} 50 \cot \beta l_{\mathrm{oc}}=50$
This satisfied only when $-\mathrm{j} 50 \cot \beta l_{\mathrm{oc}}=\infty$

$$
\text { i.e., } \beta l_{\mathrm{oc}}=\mathrm{m} \pi
$$

$$
\frac{2 \pi}{\lambda} \ell_{o c}=m \pi
$$

$$
\ell_{\mathrm{oc}}=\frac{\mathrm{m} \lambda}{2}
$$

$$
\ell_{\mathrm{oc}}=\frac{\mathrm{mv}}{2 \mathrm{f}}
$$

$$
=\frac{\mathrm{m} \times 2 \times 10^{8}}{2 \times \mathrm{f} \times 10^{9}}[\because \text { fin } \mathrm{GHZ}, \mathrm{Here} \mathrm{f}=0,1,2,3, \mathrm{GHZ}]
$$

$$
\ell_{\mathrm{oc}}=\frac{\mathrm{m}}{10 \mathrm{f}}
$$

$\mathrm{f}=1 \mathrm{GHz}$ (Here $\mathrm{f}=1 \mathrm{GHz} \mathrm{m}=1$ for minimum length l_{oc})
$\ell_{\mathrm{oc}}=\frac{\mathrm{m}}{10}$
$\ell_{\mathrm{oc}}=\frac{1}{10}[$ for $\mathrm{m}=1]$
$L_{\mathrm{oc}}=0.1$
65. Ans. C.

$P \cdot E=q v$
By an application of an external field, change carries acquire some kinetic energy, with velocity V
$q \mathrm{v}=1 / 2 \mathrm{mv}^{2}$
$\mathrm{V}=\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
Time taken to reach $\mathrm{x}=\mathrm{d}$ plate is known as g tr 'Gap tramit' time
$\mathrm{t}_{\mathrm{g}}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{\mathrm{d}}{\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}}$
24, $\frac{6}{\sqrt{51}}$

