1. Ans. A.

Before superlative article 'the' has to be used. 'one of' the expression should take plural noun and so option ' C^{\prime} and 'D' can't be the answer.
2. Ans. B.
'lose' is verb.
3. Ans. A.
'effectiveness' is noun and 'prescribed' is verb. These words are apt and befitting with the word 'medicine.'
4. Ans. A.

5. Ans. C.

6. Ans. C.

P (a person infected but does not show symptoms) =
$0.50 \times 0.70=0.35$
The percentage is 35%
7. Ans. B.

The words 'was confident that they would reciprocate' and 'last week proved him wrong' lead to statements iii and iv as logically valid inferences.
8. Ans. D.

From given data, the following arrangement is possible Shiva Leela Pavithra Among four alternatives, option D is TRUE.
9. Ans. C.

$$
\begin{aligned}
& q^{-a}=\frac{1}{r}, r^{-b}=\frac{1}{s}, s^{-c}=\frac{1}{q} \\
& q^{a}=r, r^{b}=s, s^{c}=q \\
& r=q^{a}=\left(s^{c}\right)^{a}=s^{a c} \\
& s=r^{b}=\left(s^{a c}\right)^{b}=s^{a b c} \Rightarrow a b c=1
\end{aligned}
$$

10. Ans. C.

Q's one hour work $=\frac{1}{25 \times 12}$
R's one hour work $=\frac{1}{50 \times 12}$
Since Q has taken 2 days sick leave, he has worked only 5 days on the end of seventh day.
Work completed by Q on $7^{\text {th }}$ day $=(5 \times 12) \frac{1}{25 \times 12}$
Work completed by R on $7^{\text {th }}$ day $=(7 \times 18) \frac{1}{50 \times 12}$
Ratio of their work
$=\frac{5 \times 12}{25 \times 12} / \frac{7 \times 12}{50 \times 12} \Rightarrow 20: 21$
11. Ans. C.
$M \cdot M^{4 k+1}=M^{4 K} \cdot M^{2}\left(M^{4}\right)^{k} \cdot M^{2}=I \cdot M^{2}=M^{2}$
A is not correct
$M \cdot M^{4 k+2}=M^{4 K} \cdot M^{3}\left(M^{4}\right)^{k} \cdot M^{3}=I \cdot M^{3}=M^{3}$
B is not correct
$M \cdot M^{4 k+3}=M^{4 K} \cdot M^{4}\left(M^{4}\right)^{k} \cdot M^{4}=I \cdot I=I$
C is correct
$M \cdot M^{4 k}=M .\left(M^{4}\right)^{k}=M(I)=M$.
D is not correct
12. Ans. A.

We know that if X is parameter of poison's distribution
Then, First moment $=\lambda$
Second moment $=\lambda^{2}+\lambda$
Given that $\lambda^{2}+\lambda=2$
$\Rightarrow \lambda^{2}+\lambda-2=0$
$(\lambda+2)(\lambda-1)=0$
$\lambda=-2$ or $1 \quad(\lambda \neq-2)$
$\therefore \lambda=1$
\therefore First moment $=1$
13. Ans. B.

We know that every differentiable function is continuous but converse need not be true
14. Ans. A.
15. Ans. C.

Since the integration of an odd function is even in this logic A and B cannot be the answer as they are odd functions.
However both C and D are even functions but the integration of a linear curve has to be parabolic in nature and it cannot be a constant function. Based on this Option C is correct.
16. Ans. C.

If the input to a system is its eigen signal, the response has the same form as the eigen signal
17. Ans. B.

Consider $\mathrm{x}(\mathrm{t})=\cos \left(w_{0} t\right)$
If $\mathrm{x}(\mathrm{t})$ is sampled with a sampling period
$T_{s}, x[n]=\cos \Omega_{0} n$ is obtained
Here, $\quad \frac{\Omega_{0}}{T_{s}}=\omega_{0}$
$\frac{2 \pi m}{N_{0} T_{s}}=\frac{2 \pi}{T_{0}}$
$\therefore \frac{T_{0}}{T_{s}}=\frac{N_{0}}{m}$ Which must be a rational number
Thus, $\frac{T}{T_{s}}=\frac{12}{10}=\frac{6}{5}$ lives a periodic signal after sampling.
18. Ans. B.
$a^{n} u[n] ; R O C:|z|>|a|=R_{1}$
$b^{n} u[n] ; R O C:|z|>|b|=R_{2}$
$a^{n} u[n]+b n u[n] ; R O C: R_{1} \cap R_{2}=|z|>|b|$
19. Ans. D.

A two port network is reciprocal in transmission parameters if $A D-B C=1$ i.e. Determinant $(T)=1$
20. Ans. A.

Sinusoidal signal frequency $=33$
Impulse train frequency $=46$
Resultant signal contains spectral frequencies $\pm 33, \pm 13$, $\pm 7.9, \pm 59 \mathrm{etc}$,
Thus if it is passed through ideal LPF of cutoff frequency 23 Hz only $\pm 13 \mathrm{~Hz}$ frequency is filtered out.
Output signal fundamental frequency $=13 \mathrm{~Hz}$.
21. Ans. A.

New energy level is near to conduction band, so it is pentavalent atoms to form n-type semiconductor.
22. Ans. C.

$$
\begin{aligned}
& \rightarrow I \infty \frac{1}{L} \operatorname{soL} \downarrow I_{O F F} \uparrow \\
& \rightarrow r_{d}=\frac{\partial V_{D S}}{I I_{D}}=\frac{L}{\mu_{n} c_{o x} W\left(V_{u s}-V_{t}-V_{D S}\right)} \\
& \operatorname{soL} \downarrow I_{O N} \downarrow
\end{aligned}
$$

\rightarrow If the channel length reduces, then threshold voltage also changes
$\rightarrow L \downarrow I_{O N} \downarrow$
So option C. is matching.

23. Ans. B.

Voltage at (+) terminal $V_{+}=V_{C C}-V_{\text {ref }}$
Voltage at emitter of PNP BJT $V_{E}=V_{C C}-V_{\text {ref }}$
The current I_{E} through R
$I_{E}=\frac{V_{C C}-\left(V_{C C}-V_{r e f}\right)}{R}$
$I_{E}=\frac{V_{r e f}}{R}$
$I_{C}=I_{0}$
$I_{C}=\alpha I_{E}=\left(\frac{\beta}{\beta+1}\right) I_{E} \Rightarrow I_{C}=I_{0}\left(\frac{\beta}{\beta+1}\right) \frac{V_{\text {ref }}}{R}$

24. Ans. A.

The voltage at (-) terminated of the OP-Amp

$$
V_{(-)}=\frac{2}{2+8} \times 10=2 V
$$

The output of the op-Amp goes to $+\mathrm{V}_{\mathrm{cc}}$ whenever $V_{i}>V_{(-)}$i.e $V_{i}>2 V$ makes BJT turn ON. So, the LED glows. The sections of the wave form become more than 2 V for the range [a to b , (c to d) and (e to f)] So LED glows 3 times.
25. Ans. A.

Sol. When the output voltage is positive the diode D_{i} is turned on making $100 k \Omega$ resistor to become parallel to $22.1 \mathrm{k} \Omega$. So the gain is reduced. When the output voltage becomes negative the diode D_{2} is turned on thereby again $100 k \Omega$ resistor to become parallel to $22.1 \mathrm{k} \Omega$. So the gain is reduced. With the use of diodes, the non-ideal OP-Amp is made stable to produce steady
26. Ans. A.

27. Ans. C.

$x=\sum m(7)$
$y=\sum m(3,6)$
$z=\sum m(3,6,7)$
$=\bar{A} B C+A B \bar{C}+A B C$
$=\bar{A} B C+A B$
$=B(\bar{A} C+B)$
$=B(A+c)$
28. Ans. C.

The transfer characteristics of the CMOS inverter is as follows

Since the inverter is connected in feedback loop formed by connecting 10XQ resistor between the output and input, the output goes and stays at the middle of the characteristics
$V_{a}=\frac{V_{I R}+V_{I H}}{2}$
$V_{a} \Rightarrow$ Switching threshold of inverter
29. Ans. D.

30. Ans. A.

$\therefore(-1, j 0)$ should be encircled in Counter clock wise direction equaling P poles in RHP.
31. Ans. B.
$\mathrm{R}_{\mathrm{b}}=56 \mathrm{kbps}, \alpha=0.25$
$\mathrm{BW}=\frac{\mathrm{R}_{\mathrm{b}}}{2}[1+\alpha]=\frac{56}{2}[1+0.25] \mathrm{kHz}=35 \mathrm{kHz}$
32. Ans. B.
33. Ans. B.
$s(t)=5 \cos 1600 \pi t$
$+20 \cos 1800 \pi t+5 \cos 2000 \pi t$
$=A_{c}\left[1+\frac{A_{m}}{A_{c}} \cos 200 \pi t\right] \cos (1800 \pi t)$
$A_{c}=20$
$\frac{A_{c} \mu}{2}=5 \Rightarrow \mu=\frac{5 \times 2}{20}=0.5$
$\mu=0.5$
34. Ans. A.

Consider a Gaussian surface a sphere of radius 10 m
To ensure $\overrightarrow{\boldsymbol{\nu}}-\vec{v}$ at radius 10 m , the total charge enclosed by Gaussian surface is zero
$Q_{\text {enc }}=0$
$20 \times 2^{2}-4 \times 4^{2}=P_{s} \times 8^{2}=0$
$\Rightarrow P_{s}=-0.25 n c / \mathrm{m}^{2}$

35. Ans. B.

Given

Propagation contact, $\mathrm{P}=(2+\mathrm{j} 5) \mathrm{m}^{-1}$, characteristic impedance $z_{0}=50 \Omega$, angular frequency $\omega=10^{6} \mathrm{rad} / \mathrm{sec}$,

$$
\begin{aligned}
& P=\sqrt{(R+j \omega L)(G+j \omega C)} \\
& z_{0}=\sqrt{\frac{(R+j \omega L)}{(G+j \omega C)}} \\
& P z_{0}=R+j \omega L \\
& \Rightarrow R+j \omega L=(100+j 250) \\
& \therefore R=100 \Omega / m \\
& L=\frac{250}{10^{6}}=250 \mu H / m \\
& \frac{P}{z_{0}}=G+j \omega C \\
& G+j \omega C=\left(\frac{2}{50}+j \frac{5}{50}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{G} & =0.04 \mathrm{~s} / \mathrm{m} \\
\mathrm{C} & =\frac{5}{50 \times 10^{6}}=0.1 \mu \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

Therefore line constants $L, C, R \& G$ are respectively $L=250 \mu \mathrm{H} / \mathrm{m}, \mathrm{C}=0.1 \mu \mathrm{~F} / \mathrm{m}, \mathrm{R}=100 \Omega / \mathrm{m}$, $\mathrm{G}=0.04 \mathrm{~s} / \mathrm{m}$
36. Ans. B.

Method-I:-
$=\frac{1}{2 \pi} \int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(x+y+10) d x d y$
$=\frac{1}{2 \pi} \int_{-2}^{2}\left[2 \int_{0}^{\sqrt{4-x^{2}}}(x+10)+0\right] d x$
$=\frac{1}{2 \pi} \int_{-2}^{2}(x+10)(y)_{0}^{\sqrt{4-x^{2}}} d x$
$=\frac{1}{\pi} \int_{-2}^{2}\left(x \sqrt{4-x^{2}}+10 \sqrt{4-x^{2}} d x\right.$
$=\frac{1}{\pi}\left[0+10 \times 2 \int_{-2}^{2} \sqrt{4-x^{2}} d x\right]$
$=\frac{20}{\pi}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$
$=\frac{20}{\pi}\left[0+2\left(\frac{\pi}{2}\right)\right]=20$
Method - II:-
$\frac{1}{2 \pi} \iint_{D}(x+y+10) d x d y$
$=\frac{1}{2 \pi} \int_{r=0}^{2} \int_{\theta=0}^{2 \pi}[r(\cos \theta+\sin \theta)+10] r d r d \theta$
(Changing into polar coordinates by $x=r \cos \theta$)
37. Ans. A.
$\left[\begin{array}{c}x(n) \\ x(n-1)\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathrm{n} \geq 2$
$\mathrm{n}=2$
$\left[\begin{array}{c}x(2) \\ x(1)\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{2}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
$x(2)=2, x(1)=1$
$\mathrm{n}=3$
$\left[\begin{array}{l}\mathrm{x}(3) \\ \mathrm{x}(2)\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{3}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
$x(3)=3, x(2)=2$
From the above values we can write the recursive relation as
$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n}-2)$
$x(2)=x(1)+x(0)=1+1=2$
$x(3)=x(2)+x(1)=2+1=3$
$x(4)=x(3)+x(2)=3+2=5$
$x(5)=x(4)+x(3)=5+3=8$
$x(6)=x(5)+x(4)=8+5=13$
$x(7)=x(6)+x(5)=13+8=21$
$x(8)=x(7)+x(6)=21+13=34$
$x(9)=x(8)+x(7)=34+21=55$
$x(10)=x(9)+x(8)=55+34=89$
$x(11)=89+55=144$
$\mathrm{x}(12)=144+89=233$
38. Ans. A.
$-\frac{1}{2 \pi} \oint_{c} \frac{\sin z}{(z-2 \pi j)^{3}} d z=-\frac{1}{2 \pi} \times 2 \pi j \times \frac{f^{\prime \prime} 2 \pi j}{2!}$
(by Cauchy integral formula)
$f(z)=\sin z$
$f^{\prime}(z)=\cos z$
$f^{\prime \prime}(z)=-\sin z$
$-\frac{1}{2 \pi} \oint_{c} \frac{\sin z}{(z-2 \pi j)^{3}} d z=$
$-\frac{1}{2 \pi} \times 2 \pi j \times\left(\frac{-\sin 2 \pi j}{2}\right)=-\frac{1}{2} \sinh 2 \pi$
$=-133.87$
39. Ans. A.

Volume $=\int_{3}^{5} \int_{\pi / 8}^{\pi / 4} \int_{3}^{4.5} \rho d \rho d \phi d z=4.71$
40. Ans. B.

Sol. Laplace transition of one cycle of
$f(t)=\frac{1}{S}\left[1-e^{-s_{r} / 2}\right]$
\therefore Laplace transition of causal periodic square wave given in $f(t)$ is,
$F(s)=\frac{\frac{1}{S}\left[1-e^{-S T / 2}\right]}{\left(1-e^{-S T}\right)}$
$=\frac{\frac{1}{S}\left[1-e^{-S T / 2}\right]}{\left[1-e^{-S T / 2}\right]\left[1+e^{-S T / 2}\right]}=\frac{1}{S\left[1+e^{-S T / 2}\right]}$
41. Ans. A.

The property of any LTI system or network is if the excitation contains ' n ' number of different frequency then the response also contains exactly n number of different frequency term and the output frequency and input frequency must be same however depending on components there is a possible change in amplitude and phase but never the frequency.
\rightarrow If the source has 3 frequency terms as given
$\sum_{k=1}^{3} a_{k} \cos k \omega_{0} t$
b_{k} and $\phi_{k} t \geq 01-e^{-t / T}$
$t-T\left(1-e^{-t / T}\right)$
$Y(s)=\frac{K}{s^{2}\left(1+s^{2}\right)}=\frac{K_{1}}{s}+\frac{K_{2}}{s^{2}}+\frac{K_{3}}{1+s \tau}$
$Y(t)=K_{1} u(t)+K_{2} u(t)+K_{3} e^{-t / 2}$
$\rightarrow X-R$
$Y-P$
$Z-Q$
$\left(1-e^{-t / \tau}\right) X(s)=\frac{k}{1+s \tau} 1$
$\Rightarrow y(t)=k e^{-t / \tau}$
then any voltage or any current of any element should have also 3 terms based on this option B. and D. are eliminated.
\rightarrow If we take option C. . It has 3 frequency term but it also suggest there is a phase change so 4 ,, but amplitude must be same as input as ak is present which may not be true always.
\rightarrow So option A. is correct, as it suggest frequency term of output and inputs are same with possible change in amplitude and phase, because we have (b_{k} and ϕ_{k}).
42. Ans. C.
\rightarrow In general the first order, L.P.F filter transfer function
is $G(s)=\frac{k}{1+s \tau}$ because $G(0)=\mathrm{k}$ and $\mathrm{G}(\mathrm{co})=00$, if we take this transfer function as reference and give different input such as $s(t) \cdot r(t) \cdot u(t)$
\rightarrow if input is $s(t)$
$Y(s)=\frac{k}{1+s \tau} X(s)=\frac{k}{1+s \tau} 1$
$\Rightarrow y(t)=k e^{-t / \tau}$
\rightarrow if input is $\mathrm{u}(\mathrm{t})$
$Y(s)=\frac{k}{1+s \tau}=K_{1}\left(1-e^{-t / \tau}\right)$
\rightarrow if input is $r(t)$
$Y(s)=\frac{K}{s^{2}\left(1+s^{2}\right)}=\frac{K_{1}}{s}+\frac{K_{2}}{s^{2}}+\frac{K_{3}}{1+s \tau}$
$Y(t)=K_{1} u(t)+K_{2} u(t)+K_{3} e^{-t / 2}$
$\rightarrow X-R$
$Y-P$
$Z-Q$
43. Ans. A.

We can join nodes that are at same potential so network becomes

$\mathrm{I}_{\mathrm{D}(\text { RMS })}=\frac{2 \mathrm{~m}}{2}=\operatorname{lm} \mathrm{A}$

44. Ans. C.

To find maximum power transferred to load we need to obtain Thevenin equivalent of the circuit
\rightarrow Obtaining $V_{o c}$

$V_{0}=\frac{2}{3+2} 5=2 \mathrm{~V}$
$V_{0 C}=\frac{40}{10+40} 100 V_{0}=\frac{4}{5} \times 100 \times 2=160 \mathrm{~V}$
\rightarrow Obtaining $I_{S C}$

$V_{0}=\frac{2}{3+2} 5=2 \mathrm{~V}$
$I_{S C}=\frac{100 V_{0}}{2}=\frac{200}{10}=20 \mathrm{~mA}$
$\rightarrow R_{m}=\frac{V_{0 C}}{I_{S C}}=\frac{160}{20}=8 \mathrm{k} \Omega$
\rightarrow So the network is

\rightarrow For MPTR $=8 \mathrm{k}$

$$
P_{m c r}=\frac{V_{+n}^{2}}{4 R_{+n}}=\frac{160^{2}}{(4 \times 8) \times 103}=0.8 w a t t
$$

45. Ans. A.

Consider

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \sin ^{2}(2 \omega) d \omega \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right)\left(\frac{1-\cos 4 \omega}{2}\right) d \omega \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \sin ^{2} d \omega-\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \cos 4 \omega d \omega \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \cos 4 \omega d \omega=0 \text { For the given } x[\mathrm{n}] \\
& \because \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega=x[0] \\
& \frac{1}{\pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) \sin ^{2} 2 \omega d \omega=8
\end{aligned}
$$

46. Ans. A.

$$
\begin{aligned}
& \varepsilon=12 \varepsilon_{0} \\
& =12 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{m} \\
& \mathrm{~N}_{\mathrm{D}}=10^{16} \mathrm{~cm}^{-3} \\
& =10^{22} \mathrm{~m}^{-3} \\
& \mathrm{~N}_{\mathrm{A}}=10^{17} \mathrm{~cm}^{-3} \\
& =10^{23} \mathrm{~m}^{-3} \\
& \mathrm{~V}_{0}=\frac{\mathrm{kT}}{\mathrm{q}} \ell \mathrm{n}\left[\frac{\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}}{\mathrm{ni}^{2}}\right]=0.026 \ell \mathrm{n}\left[\frac{10^{23} \times 10^{22}}{\left(1.5 \times 10^{16}\right)^{2}}\right]=0.757 \mathrm{~V} \\
& \mathrm{~W}=\sqrt{\frac{2 \varepsilon}{\mathrm{q}} \mathrm{~V}_{0}\left(\frac{1}{\mathrm{~N}_{\mathrm{A}}}+\frac{1}{\mathrm{~N}_{\mathrm{D}}}\right)}=\sqrt{\frac{2 \times 12 \times 8.85 \times 10^{-14}}{1.6 \times 10^{-19}} \times 0.757\left(\frac{1}{10^{23}}+\frac{1}{10^{22}}\right)} \\
& =3.325 \times 10^{-8} \mathrm{~m} \\
& =3.325 \times 10^{-6} \mathrm{~cm} \\
& \mathrm{~W}_{\mathrm{p}}=\frac{\mathrm{N}_{\mathrm{D}}}{\mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{D}}} \omega=\frac{10^{22}}{10^{22}+10^{23}} \times 3.325 \times 10^{-8}=3.023 \times 10^{-9} \mathrm{~m} \\
& =3.023 \times 10^{-7} \mathrm{~cm} \\
& \mathrm{Q}=\mathrm{W}_{\mathrm{P}} \mathrm{~N}_{\mathrm{A}} \mathrm{e} \mathrm{~A} \\
& \Rightarrow \frac{Q}{A}=W_{P} N_{A} \mathrm{e}=3.023 \times 10^{-7} \times 10^{17} \times 1.6 \times 10^{-19} \\
& =4.836 \times 10^{-9} \mathrm{~cm}^{-2} \\
& =4.836 \mathrm{nc}-\mathrm{cm}^{-2}
\end{aligned}
$$

47. Ans. A.

IDs =
$I_{D S}=\frac{1}{2} \mu_{N} C_{O X} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$
$g_{d S}=\frac{d I_{D S}}{d V_{D S}}=\lambda \frac{1}{2} \mu_{N} C_{O} \times \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}$
$=0.09 \times 0.5 \times 70 \times 10^{-6} \times 4(1.8-0.3)^{2}$
$=28.476 \mu s$
48. Ans. B.

$q D_{p} \frac{d p}{d x}=q \mu_{\mathrm{p}} \mathrm{p} \varepsilon$
$\mu_{\mathrm{p}} \mathrm{V}_{\mathrm{T}} \frac{\mathrm{dp}}{\mathrm{dx}}=\mu_{\mathrm{p}} \mathrm{p} \varepsilon$
$\varepsilon=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{p}} \frac{\mathrm{dp}}{\mathrm{dx}} \quad \mathrm{p} \cong \mathrm{N}_{\mathrm{A}}$
$\varepsilon=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{N}_{\mathrm{A}}} \frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dx}} \Rightarrow \varepsilon=\mathrm{V}_{\mathrm{T}} \frac{\mathrm{d}}{\mathrm{dx}} \ln \left[\mathrm{N}_{\mathrm{A}}(\mathrm{x})\right]$
$\log _{10} x_{1}=1 \mu \mathrm{~m} \Rightarrow \mathrm{x}_{1}=10^{1} \mu \mathrm{~m}=0.001 \mathrm{~cm}$
$\log _{10} x_{2}=2 \mu \mathrm{~m} \Rightarrow x_{2}=10^{2} \mu \mathrm{~m}=0.01 \mathrm{~cm}$
$\ln \left(10^{14}\right)=32.23$
$\ln \left(10^{16}\right)=36.84$
$\varepsilon=0.026\left[\frac{36.84-32.23}{0.01-0.001}\right]=0.0133 / \mathrm{cm}$
49. Ans. A.
$P_{n 0}=\frac{n_{i}^{2}}{N^{D}}=\frac{2.25 \times 10^{20}}{5 \times 10^{16}}=0.5 \times 10^{4} / c c$
$\rightarrow \Delta P=G \tau_{p o}=1.5 \times 10^{20} \times 10^{-6} \times 0.1$
$=1.5 \times 10^{3} / c c$
$\Delta P(t)=\Delta P e^{-t / \tau_{p}}$
$P(t)=\Delta P(t)+P_{n o} \approx \Delta P(t)$
$\Delta P(0)=\Delta P=1.5 \times 10^{3} / c c$
$\Delta P(t=3)=7.47 \times 10^{11} / c c$
50. Ans. A.

Using superposition it can shown that the output
$V_{0}=\left[1+\frac{R_{f}}{R_{N}}\right]\left[\frac{R_{p}}{R_{p 1}} V_{p 1}+\frac{R_{p}}{R_{p 2}} V_{p 2}+\ldots \ldots \ldots \frac{R_{p}}{R_{P N}} V_{p n}\right]-\left[\frac{R_{f}}{R_{N 1}} V_{N 1}+\frac{R_{f}}{R_{N 2}} V_{N 2}+\ldots \ldots \ldots \frac{R_{f}}{R_{N n}} V_{N n}\right]$
Where $\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{N} 1}\left\|\mathrm{R}_{\mathrm{N} 2}\right\| \ldots . \| \mathrm{R}_{\mathrm{Nn}}$ and $\mathrm{R}_{\mathrm{p}}=\mathrm{R}_{\mathrm{p} 1}\left\|\mathrm{R}_{\mathrm{p} 2} \ldots . . \mathrm{R}_{\mathrm{PN}}\right\| \mathrm{R}_{\mathrm{PO}}$
In the problem given
$\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{N} 1}=\mathrm{R}_{\mathrm{N} 2}=\ldots \ldots . .=\mathrm{R}_{\mathrm{Nn}}=10 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{p} 1}=\mathrm{R}_{\mathrm{P} 2}=\mathrm{R}_{\mathrm{P} 3}=\ldots \ldots=\mathrm{R}_{\mathrm{PN}}=\mathrm{R}_{\mathrm{PO}}=1 \mathrm{k} \Omega$
$\therefore \mathrm{V}_{0}=\left[1+\frac{10 \mathrm{k}}{\left(\frac{10 \mathrm{k}}{\mathrm{n}}\right)}\right]\left[\frac{\frac{1 \mathrm{k}}{(1+\mathrm{n})}}{1 \mathrm{k}} \mathrm{V}_{\mathrm{P} 1}+\frac{\left(\frac{1 \mathrm{k}}{1+\mathrm{n}}\right)}{1 \mathrm{k}} \mathrm{V}_{\mathrm{P} 2}+\ldots \ldots ..\right]-\left[\frac{10 \mathrm{k}}{10 \mathrm{k}} \mathrm{V}_{\mathrm{N} 1}+\frac{10 \mathrm{k}}{10 \mathrm{k}} \mathrm{V}_{\mathrm{N} 2}+\ldots \ldots ..\right]$
$\therefore \mathrm{V}_{0}=\left(\mathrm{V}_{\mathrm{P} 1}+\mathrm{V}_{\mathrm{P} 2}+\ldots \ldots . \mathrm{V}_{\mathrm{Pn}}\right)-\left(\mathrm{V}_{\mathrm{N} 1}+\mathrm{V}_{\mathrm{N} 2}+\ldots \ldots \ldots \ldots . \mathrm{V}_{\mathrm{Nn}}\right)$
If the series approaches ∞ then
$\mathrm{V}_{0}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7} \ldots \ldots.\right)-\left(\frac{-1}{2} \frac{-1}{4} \frac{-1}{6},-\ldots \ldots \ldots.\right)$
$=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+$
$=\infty$
This series is called harmonic series which is a divergent infinite series
$\therefore \mathrm{V}_{0}=+\infty=+\mathrm{V}_{\text {sat }}=+\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$
51. Ans. D.

The photo diode with Responsivity $0.8 \mathrm{~A} / \mathrm{W}$
\therefore Diode current $=0.8 \mathrm{~A} / \mathrm{W}[10 \mu \mathrm{~W}]$

$$
=8 \times 10^{-6} \mathrm{~A}
$$

$\mathrm{V}_{0}=-8 \mu(1 \mathrm{M})=-8 \mathrm{~V}$
$\begin{aligned} \mathrm{I}_{\mathrm{L}} & =\frac{-8}{10 \mathrm{k}}=-8 \times 10^{-4} \mathrm{~A}=-800 \times 10^{-6} \mathrm{~A} \\ & =-800 \mu \mathrm{~A}\end{aligned}$

Therefore the value of photo current throughput the load is $-800 \mu \mathrm{~A}$
52. Ans. A.

As we know in a decoder w.r.t any binary input combination the corresponding output pin is high and remaining low.
\rightarrow Similarly to the encoder one input is high among all and its equivalent binary combination is available at output.
\rightarrow In this case to identify the functionality, let give some arbitrary binary input and observe the output.
\rightarrow Let $\left[X_{2} X_{1} X_{0}\right]$ is $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ respectively then $\mathrm{OP}_{5}=1=$ IP? Then $\left[Y_{2} Y_{1} Y_{0}\right.$] is [$\left.\begin{array}{lll}1 & 0 & 1\end{array}\right]$

If $\left[X_{2} X_{1} X_{0}\right]$ is $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ then $\left[\mathrm{OP}_{7}=\mathrm{IP}_{5}=1\right]$ so $\left[\mathrm{Y}_{2} \mathrm{Y}_{1}\right.$ $\left.Y_{0}=101\right]\left[X_{2} X_{1} X_{0}\right]$ is $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ then $\left[\mathrm{OP}_{4}=I P_{6}=1\right]$ so $\left[\mathrm{Y}_{2}\right.$ $\left.Y_{1} Y_{0}=110\right]$
\rightarrow From the above we can say that
If input 101 then output is 101
101101
110110
So input binary and output gray.
53. Ans. B.

Decoder inputs will behaves as MUX select lines and when the output of decoder is high then only corresponding buffer will be enable and passed the inputs (P, Q, R, S) to the output line, so it will work as 4-to-1 multiplexer.
54. Ans. C.

In push operation 3 cycles involved: $6 T+3 T+3 T=127$
POP operation 3 cycles involved: $4 T+3 T+3 T=107$
So in the opcode fetch cycle 2 T states are extra in case of push compared to POP and this is needed to decrement the SP.
55. Ans. B.

Sol. In this first we need to find the break point by
finding the root of $\frac{d k}{d s}=0$ and then by using magnitude condition value of k can be obtained.
$G(s)=\frac{K}{s^{2}+5 s+5}$
$k=-\left(s^{2}+5 s+5\right)$
$\frac{d k}{d s}=0$
$\Rightarrow 2 s+5=0 \Rightarrow s=-2.5$

Applying magnitude condition $|G(s)|=1$

$$
\begin{aligned}
& \left|\frac{K}{s^{2}+5 s+5}\right|_{s=-2.5}=1 \\
& \Rightarrow\left[\frac{k}{\left(-2.5^{2}\right)+[5 x(-2.5)]+5}\right]=1 \\
& \Rightarrow\left[\frac{k}{6.25-12.5+5}\right]=1 \\
& \Rightarrow\left|\frac{k}{-1.25}\right|=1 \Rightarrow k=1.25
\end{aligned}
$$

56. Ans. A.
$K=2.86$
Peak over shoot 10\%
$\Rightarrow e^{\frac{-\pi \xi}{\sqrt{1-\xi^{2}}}}=0.1$
$\Rightarrow\left[\frac{-\pi \xi}{\sqrt{1-\xi^{2}}}\right]^{2}=[\operatorname{In} 0.1]^{2}$
$\Rightarrow \frac{-\pi \xi}{\sqrt{1-\xi^{2}}}=\left[\frac{\pi}{\operatorname{In} 0.1}\right]^{2}$
$\Rightarrow \frac{1}{\xi^{2}}=1+\left[\frac{\pi}{\operatorname{In} 0.1}\right]^{2}$
$\Rightarrow \frac{1}{\xi^{2}}=2.86$
$\Rightarrow \xi^{2}=\frac{1}{2.86}=0.34$
$\Rightarrow \xi=0.59$
\rightarrow The characteristic equation of above transfer function
is $s^{2}+2 s+k=0$ Comparing with standard equation
$s^{2}+2 \xi \omega_{n}+\omega_{n}^{2}=0$
$\Rightarrow 2 \xi \sqrt{k}=2$
$\Rightarrow \sqrt{k}=\frac{2}{2 \xi}$
$\Rightarrow k=\left[\frac{2}{2 \xi}\right]^{2}=\frac{1}{\xi^{2}}=2.86$
$k=2.86$
57. Ans. A.

We can proceed here by taking this polynomial as characteristic equation and conclusion can be draw by using RH criterion. As we are interested to know how many roots are lying on right half of s plane.

S^{4}	2	0	-2
	-5	+5	0
		-2	Since row of zero occursthe auxiliaryequation is
A. $\varepsilon: 2 s^{2}-2$			
$\frac{d}{d s}(A t)=4$			

\rightarrow The number of roots i.e. the number of zeros in this case in right half of plane is number of sign changes
\rightarrow Number of sign changes $=3$
58. Ans. A.
$\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i} \log _{2}(2)^{i}=\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i} \log _{2}{ }^{2}$
$=\sum_{i=1}^{\infty} i\left(\frac{1}{2}\right)^{i}$
$=\sum_{i=1}^{\infty} i a^{i-1+1}=a \sum_{i=1}^{\infty} i a^{i-1}=a \sum_{i=1}^{\infty} \frac{d}{d a}\left(a^{i}\right)$
$=a \frac{d}{d a}\left[\sum_{i=1}^{\infty} a^{i}\right]=\frac{a}{(1-a)^{2}}=\frac{1 / 2}{1 / 4}=2 b i t s$
59. Ans. A.

Cross over Probability $\mathrm{P}=0.1$
$X=$ number of errors
$\frac{1}{2} P\left(x \geq\left. 2\right|_{000 \text { sent }}\right)+\frac{1}{2} P\left(x \geq\left. 2\right|_{111 \text { sent }}\right)$
$=2 \times \frac{1}{2}\left[\left(\frac{3}{2}\right)(0.1)^{2}(0.9)^{1}+\left(\frac{3}{2}\right)(0.1)^{3}(0.9)^{0}\right]$
$=3(0.01)(0.9)+(0.3)^{1}=\frac{27}{1000}+\frac{1}{1000}=\frac{28}{1000}$
$=0.028$
60. Ans. A.
$r(t)=S(t)+n(t)$
$r_{s}(t)=\int_{0}^{t} s(u) h(t-u) d u$
$r_{n}(t)=\int_{0}^{t} n(u) h(t-u) d u$
$S N R=\frac{Y_{s}^{2}(t)}{E\left[Y_{s}^{2}(t)\right]}=\frac{\left[\int_{0}^{t} s(u) h(t-u) d u\right]^{2}}{\frac{N_{0}}{2} \int_{0}^{t} h^{2}(t-u) d u}$
By $C S$ in equality $(i f h(t-u)=C S(u))$
$S N R_{\text {opt }}=\frac{\int_{0}^{t} s^{2}(u) d u}{\frac{N_{0}}{2}}=\frac{2 E_{s}}{N_{o}}$
$S N R_{\text {opt }}=\frac{2 E_{s}}{N_{o}}$ if $E_{n} \geq E_{s}$
61. Ans. D.

Current density,
$\overrightarrow{\mathrm{J}}=\frac{400 \sin \theta}{2 \pi\left(\mathrm{r}^{2}+4\right)} \overline{\mathrm{a}}_{\mathrm{r}} \mathrm{A} / \mathrm{m}^{2}$
current passing through the portion of sphere of radius $\mathrm{r}=0.8 \mathrm{~m}$ is given by
$\mathrm{I}=\int_{\mathrm{s}} \mathrm{J} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}(\mathrm{r}=$ constant $)$
$d \vec{s}=r^{2} \sin \theta d \theta d \phi$ â $d(\because r=0.8 m)$
$\mathrm{I}=\int_{\theta=\frac{\pi}{2}}^{\frac{\pi}{4}} \int_{0=0}^{2 \pi} \frac{400 \sin \theta}{2 \pi\left(\mathrm{r}^{2}+4\right)} \mathrm{r}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi$
$=\frac{400(0.8)^{2}}{2 \pi\left(0.8^{2}+4\right)}\left[\left(\frac{\pi}{4}-\frac{\pi}{12}\right)-\left(\sin \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{6}\right)\right)\right] \times(2 \pi)$
$\therefore \mathrm{I}=7.45 \mathrm{Amp}$
The average current density through the given sphere surface is

$$
\begin{aligned}
\mathrm{J} & =\frac{\mathrm{I}}{\text { Area of } \mathrm{r}=0.8 \mathrm{~m} \text { sphere }} \\
& =\frac{7.45}{(0.8)^{2} \int_{\theta=\pi / 2}^{\pi / 4} \int_{\phi=0}^{2 \pi} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi} \\
& =\frac{7.45}{1.04} \\
& \therefore \mathrm{~J}=7.15 \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

62. Ans. A.

$10 \log _{10} \mathrm{NF}=2 \mathrm{~dB}$
$\log _{10} \mathrm{NF}=0.2$
$\mathrm{NF}=10^{0.2}$
Noise temperature $=(F-1) T_{o}$

$$
=\left(10^{0.2}-1\right) 290 \mathrm{o}=169.36 \mathrm{~K}
$$

Noise power $\mathrm{i} / \mathrm{p}=\mathrm{k} \mathrm{T}_{\mathrm{c}} \mathrm{B}$

$$
=1.38 \times 10^{-23} \times(169.36+50) \times 12 \times 10^{6}
$$

Noise power at $\mathrm{o} / \mathrm{p}=\left(3.632 \times 10^{-14}\right) \times 10^{4}$

$$
=3.73 \times 10^{-10} \text { watts }
$$

63. Ans. A.

Given Lossless horn antennas
$\eta \mathrm{T}=\eta \mathrm{R}=1$
Power Gain = Directivity
Directivity of Txing antenna, $\mathrm{D}_{\mathrm{T}}=18 \mathrm{~dB}$
$10 \log \mathrm{D}_{\mathrm{T}}=18$
G_{T} (or) $\mathrm{D}_{\mathrm{T}}=63.09$
Directivity of Rxing antenna, $\mathrm{D}_{\mathrm{R}}=22 \mathrm{~dB}$

$$
10 \log \mathrm{D}_{\mathrm{R}}=22
$$

$$
\mathrm{G}_{\mathrm{R}}(\text { or }) \mathrm{D}_{\mathrm{R}}=158.48
$$

input power $\mathrm{P}_{\text {in }}=2 \mathrm{~W}$
Spacing, $r=200 \lambda$

Friis transmission formula in given by
$\mathrm{P}_{\mathrm{L}}=\mathrm{G}_{\mathrm{T}} \mathrm{G}_{\mathrm{R}}\left[\frac{\lambda}{4 \pi \mathrm{r}}\right]^{2} \mathrm{P}_{\text {in }}^{\prime}$
where:
$\mathrm{P}_{\text {in }}^{\prime}$: Input power (prime indicates power due to reflection)
$P_{m}^{\prime}=\left|1-\Gamma_{\mathrm{r}}^{2}\right| P_{\mathrm{m}}$

$$
\begin{aligned}
& =\mid 1-(0.15)^{2} \times 2 \\
\mathrm{P}_{\mathrm{im}}^{\prime} & =1.955 \mathrm{~W} \\
\mathrm{P}_{\mathrm{L}} & =63.09 \times 158.48\left[\frac{\lambda}{4 \pi \times 200 \lambda}\right]^{2} \times 1.955 \\
& =3.1 \times 10^{-3}
\end{aligned}
$$

As there is a reflection at the terminals of Rxing antenna power delivered to the load in given by $P_{L}^{\prime}=\left\{1-\left|\Gamma_{R}^{2}\right|\right\} \times P_{L}$
$=\left\{1-(0.18)^{2}\right\} \times 3.1 \times 10^{-3}$
$\therefore \mathrm{P}_{\mathrm{L}}^{\prime}=2.99 \mathrm{~mW}$
64. Ans. C.

Given
Electric field of incident wave is
$\mathrm{E}_{\mathrm{w}}^{\mathrm{i}}=\left(\hat{\mathrm{a}}_{\mathrm{x}}+\mathrm{j} \hat{a}_{y}\right) \mathrm{E}_{0} \mathrm{e}^{\mathrm{jk}}$
at $\mathrm{z}=0$;
$\overrightarrow{\mathrm{E}}_{\mathrm{w}}^{i}=\mathrm{E}_{0} \cos \omega t \hat{\mathrm{a}}_{\mathrm{x}}-\mathrm{E}_{0} \sin \omega t \hat{\mathrm{a}}_{\mathrm{y}}$ (in time varying form)
at $\omega \mathrm{t}=0$
$\overrightarrow{\mathrm{E}}_{\mathrm{w}}^{i}=\mathrm{E}_{0} \hat{\mathrm{a}}_{\mathrm{x}}$
at $\omega \mathrm{t}=\frac{\pi}{2}$

$\overrightarrow{\mathrm{E}}_{\mathrm{w}}^{i}=\mathrm{E}_{0}\left(-\hat{\mathrm{a}}_{\mathrm{y}}\right)$

As a tip of electric field intensity is tracing a circle when time varies, hence the wave is said to be circularly polarized in clockwise direction (or) RHCP. Polarizing vector of incident wave is given by,
$\hat{\mathrm{P}}_{\mathrm{i}}=\frac{\hat{\mathrm{a}}_{\mathrm{x}}+\mathrm{j} \hat{\mathrm{a}}_{\mathrm{y}}}{\sqrt{2}}$
radiated electric field from the antenna is
$\overrightarrow{\mathrm{E}}_{\mathrm{a}}=\left(\hat{\mathrm{a}}_{\mathrm{x}}+2 \hat{\mathrm{a}}_{\mathrm{y}}\right) \mathrm{E}_{1} \frac{1}{\gamma} \mathrm{e}^{-j \mathrm{jk}}$
at $\mathrm{r}=0$
$\overrightarrow{\mathrm{E}}_{\mathrm{a}}=\mathrm{E}_{1} \cos \omega t \hat{\mathrm{a}}_{\mathrm{x}}+2 \mathrm{E}_{1} \cos \omega t \hat{\mathrm{a}}_{\mathrm{y}}$ (in time varying form)
As both x \& y components are in-phase, hence the wave is said to be linear polarized. Polarizing vector of radiated field is $\hat{\mathrm{P}}_{\mathrm{a}}=\frac{\left(\hat{\mathrm{a}}_{\mathrm{x}}+2 \hat{\mathrm{a}}_{\mathrm{y}}\right)}{\sqrt{5}}$ polarizing mismatch; The polarizing mismatch is said to have, if the polarization of receiving antenna is not same on the polarization of the incident wave. The polarization loss factor (PLF) characterizes the loss of EM power due to polarization mismatch.
PLF $=\left|\hat{P}_{1} \cdot \hat{P}_{2}\right|^{2}$
in $\mathrm{dB} ; \operatorname{PLF}(\mathrm{dB})=10 \log ($ PLF $)$
PLF $=\left|\left(\frac{\hat{a}_{\mathrm{x}}+\mathrm{j} \hat{\mathrm{a}}_{\mathrm{y}}}{2}\right) \cdot\left(\frac{\hat{\mathrm{a}}_{\mathrm{x}}+2 \hat{\mathrm{a}}_{\mathrm{y}}}{\sqrt{5}}\right)\right|^{2}=\left|\frac{1+\mathrm{j} 2}{\sqrt{2} \sqrt{5}}\right|^{2}=\frac{1}{2}$ (or) 0.5
$\operatorname{PLF}(\mathrm{dB})=10 \log 0.5=-3.0102$
65. Ans. B.
$\mathrm{P}_{\mathrm{r} a d}=\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} W_{r a d} r^{2} \sin \theta d \theta d \phi$
$=\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \frac{C_{0}}{r^{2}} \cos ^{2} \omega r^{2} \sin \omega d \theta d \phi$
$=C_{0} \times\left.\frac{-\cos ^{2} \theta}{5}\right|_{0} ^{\pi / 2} .2 \pi=\frac{2 \pi}{5} C_{0}=1.256 C_{0}$
Max. directivity $=\frac{\max \left(W_{\text {rad }}\right)}{\mathrm{P}_{\mathrm{rad}}} \times 4 \pi r^{2}=\frac{4 \pi}{1.256}=10$
Max. Directivity in $d B=10 \log 10=10 d B$.

