1. Ans. A.

Dissent is to disagree
2. Ans. B.

Revert means set back
3. Ans. B.

Vindicate has 2 meanings

1) Clear of blain
2) Substantiate, justify
4. Ans. A.
$(2 x)^{n} \times\left(\frac{y}{2}\right)^{m}=2^{n-m} \times x^{n} y^{m}$
5. Ans. D. 495

Let consecutive odd numbers be $a-10, a-8, a-6, a-4, a-2$,
a,a+12
Sum of 1st 5 number $=5 a-30=425 \Rightarrow a=91$
Last 5 numbers $=(a+4)+(a+6)+\ldots \ldots .+(a+12)$
$=(95+97+99+101+103)=495$
6. Ans. C.

13 M
$17(13+4) \quad Q(\mathrm{M}+4)$
$19(17+2) \quad \mathrm{S}(\mathrm{Q}+2)$
$23(19+4) \quad W=(s+4)$
$\Rightarrow 23 \mathrm{~W}$
7. Ans. B.

KCLFTSB SHSWDG
Reverse order: Reverse order:
BCS TOF LUCK GO OD W I S HES
Ace the exam
Reverse order should be
MAXE EHT ECA
Looking at the options we have M X H T C
8. Ans. B.
$A+P\left(1+\frac{r}{100}\right)^{n}$
$A=2 P$
$2=\left(1+\frac{r}{100}\right)^{n}$
$\therefore r=7.2$
9. Ans. C.

Let total cost in 2012 is 100
Raw material increases in 2013 to $1.3 \times 20=26$
Other Expenses increased in 2013 to $1.2 \times 80=96$
Total Cost in $2013=96+26=122$
Total Cost increased by 22\%
Hint: Labour cost (i.e, 4,50,000) in 2012 is redundant data.
10. Ans. B.

1 appears in units place in 4! Ways
Similarly all other positions in 4 ! Ways Same for other digits.
Sum of all the numbers $=(11111) \times 4!(1+3+5+7+9)=$ 6666600
11. Ans. D.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots \ldots . \\
& \quad=\text { e as }^{x}=1+\frac{x}{1!}+\frac{x}{2!}+\ldots \ldots . . \forall \operatorname{xin} R
\end{aligned}
$$

12. Ans. A.

$$
\begin{aligned}
& (\nabla f)_{P(1,1,1)}=\left(\bar{i}(2 x)+\bar{j}(6 y)+\bar{k}\left(3 z^{2}\right)\right)_{P((1,1))} \\
& =2 \bar{i}+6 \bar{j}+3 \bar{k} \\
& \left|(\nabla f)_{P}\right|=\sqrt{4+36+9}=7
\end{aligned}
$$

13. Ans. A.

$$
\begin{aligned}
& X \sim N(0,1) \Rightarrow f(X)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<X<\infty \\
& \therefore E\{|X|\}=\int_{-\infty}^{\infty}|X| \cdot f(X) d x \\
& =\frac{1}{\sqrt{2 \pi}} X^{2} \int_{0}^{\infty} X e^{-x^{2} / 2} d x \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-u} d u=\sqrt{\frac{2}{\pi}}=0.797 \simeq 0.8
\end{aligned}
$$

14. Ans. B.
A.E: $-m^{2}+2 m+1=0 \Rightarrow m=-1,-1$
\therefore general solution is $x=(a+b t) e^{-t}$
15. Ans. A.
$f=\frac{1}{\sqrt{2}}\left(x^{2} y+x y^{2}\right)$
$\Rightarrow \nabla f=\bar{i}\left[\frac{2 x y+y^{2}}{\sqrt{2}}\right]+\bar{j}\left[\frac{x^{2}+2 x y}{\sqrt{2}}\right]$
$a t(1,1), \nabla f=\frac{3}{\sqrt{2}} \bar{i}+\frac{3}{\sqrt{2}} \bar{i}$
$\hat{e}=$ unit vector in the direction i.e., making an angle of $\frac{\pi}{4}$ with y-axis
$=\left(\sin \frac{\pi}{4}\right) \bar{i}+\left(\cos \frac{\pi}{4}\right) \bar{j}$
\therefore directional derivative $=\hat{e} . \nabla f=2\left(\frac{3}{\sqrt{2}}\right)(1 / \sqrt{2})=3$
16. Ans. C.

The dependent source represents a current controlled current source
17. Ans. A.

By source transformation

By KVL,
$20-10 k \cdot I+8=0$
$\Rightarrow I=\frac{28}{10 k}$
$\Rightarrow I=2.8 m A$
18. Ans. A.
$E=\frac{h C}{\lambda} \Rightarrow \lambda=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{1.42 \times 1.6 \times 10^{-19}}=0.87 \mu m$
19. Ans. A.
$n_{i} \alpha T^{3 / 2} e^{-E g / k T}$ and

$$
\rho_{\iota} \alpha \frac{1}{\eta_{i}}
$$

\therefore From the graph, Energy graph of S_{i} can be estimated
20. Ans. B.
21. Ans. B.

When a CE amplifier's emitter resistance is not by passed, due to the negative feedback the voltage gain decreases and input impedance increases
22. Ans. D.

When $V_{i}<-1.7 \mathrm{~V}: D_{1}-O N$ and $D_{2}-O F F$
$\therefore V_{0}=-1.7 \mathrm{~V}$
When $V_{i}>-2.7 \mathrm{~V}: D_{1}-O F F$ and $D_{2}-O N$
$\therefore V_{0}=2.7 \mathrm{~V}$
When $-1.7<V_{i}<2.7 \mathrm{~V}:$ Both D_{1} and $D_{2}-O F F$
$\therefore V_{0}=V_{i}$
23. Ans. D.
24. Ans. B.

Capacitor drop rate $=\frac{d v}{d t}$ For a capacitor, $\frac{d v}{d t} \propto \frac{1}{c}$
\therefore Drop rate decreases as capacitor value is increased For a capacitor, $Q=c v=i \times t \Rightarrow t \propto c$
\therefore Acquisition time increases as capacitor value increased
25. Ans. A.

26. Ans. A.

This circuit is CMOS implementation If the NMOS is connected in series, then the output expression is product of each input with complement to the final product.

$$
\begin{aligned}
& \text { So, } Y=\overline{A \cdot B \cdot \bar{C}} \\
& =\bar{A}+\bar{B}+C \\
& \text { 27. Ans. D. }
\end{aligned}
$$

$x[n]=\left(\frac{2}{3}\right)^{n} u[n+3]$
$X\left(e^{j \Omega}\right)=\sum_{n=-3}^{\infty}\left(\frac{2}{3}\right)^{n} \cdot e^{-j \Omega n}=\frac{\left(\frac{2}{3}\right)^{-3} \cdot e^{j 3 \Omega}}{1-\frac{2}{3} e^{-j \Omega}}$
$\Rightarrow A=\left(\frac{3}{2}\right)^{3}=\frac{27}{8}=3.375$
28. Ans. D.

Let $x(t)$ Fourier transform be $x(t)$

$y(t)=x(t) * h(t)[$ convolution $]$
$\Rightarrow Y(f)=X(f) \cdot H(f)$
$\Rightarrow Y(f)=e^{-j 4 \pi f}(f)$
$\Rightarrow y(t)=x(t-2)$
29. Ans. A.
$y[n]=x[n] * x[n]$
$\operatorname{Let} Y\left(e^{j \Omega}\right)$ is F.T. pair with $y[n]$
$\Rightarrow Y\left(e^{j \Omega}\right)=X\left(e^{j \Omega}\right) \cdot X\left(e^{j \Omega}\right)$
$Y\left(e^{j \Omega}\right)=\frac{1}{1-0.5 e^{-j \Omega}} \cdot \frac{1}{1-0.5 e^{-j \Omega}}$
$\operatorname{also} Y\left(e^{j \Omega}\right)=\sum_{h \alpha-\infty}^{\infty} y[n] e^{-j \Omega n}$
$\Rightarrow \sum_{n x-\infty}^{\infty} y[n]=Y\left(e^{j 0}\right)=\frac{1}{0.5} \cdot \frac{1}{0.5}=4$
30. Ans. A.
\rightarrow In a BODE diagram, in plotting the magnitude with respect to frequency, a pole introduce a line 4 slope -20dB / dc
\rightarrow If $4^{\text {th }}$ order all-pole system means gives a slope of $(-20) * d B /$ dec i.e. $-80 d B / d e c$
31. Ans. C.

Transfer function $\frac{Y(s)}{U(s)}=\frac{4}{S^{2}+4 s+4}$
If we compare with standard $2^{\text {nd }}$ order system transfer function
i.e., $\frac{w_{n}{ }^{2}}{s^{2}+2 \xi w_{n} s+w_{n}{ }^{2}}$
$w_{n}^{2}=4 \Rightarrow w_{n}=2 \mathrm{rad} / \mathrm{sec}$
32. Ans. A.

Poisson distribution: It is the property of Poisson distribution.
33. Ans. B.
$\frac{\text { Ratio of total side band power }}{\text { Carrier }} \mu^{2}$

Carrier power

If it in doubled, this ratio will be come 4 times
34. Ans. D.

Electric field of an antenna is
$E_{\theta}=\frac{\eta I_{0} d 1}{4 \pi} \sin \theta\left[\begin{array}{lll}\frac{J \beta}{r}+\frac{1}{r^{2}}-\frac{J}{\beta r^{3}} \\ \downarrow & \downarrow & \downarrow \\ \begin{array}{c}\text { Radiation } \\ \text { Field }\end{array} \\ & \begin{array}{c}\text { Inductive } \\ \text { Field } \\ \text { Elecrrosstatic } \\ \text { Field }\end{array}\end{array}\right]$
$\therefore E \alpha \frac{1}{r}$
$\left.\frac{E_{1}}{E_{2}}=\frac{r_{2}}{r_{1}} \Rightarrow E_{2}=6 \right\rvert\, \mathrm{mv} / \mathrm{m}$
$P=\frac{1}{2} \frac{E^{2}}{\eta}=\frac{1}{2} \frac{36 \times 10^{-8}}{120 \pi}=47-7 \mathrm{nw} / \mathrm{m}^{2}$
35. Ans. B.

1) Point electromagnetic source, can radiate fields in all directions equally, so isotropic.
2) Dish antenna \rightarrow highly directional
3) Yagi - uda antenna \rightarrow End fire

Figure: Yagi-uda antenna
36. Ans. C.
$A \cdot E: m^{2}+4 m+4=0 \Rightarrow m=-2,-2$
\therefore solution is $y=(a+b x) e^{-2 x}$
$y=(a+b x)\left(-2 e^{-2 x}\right)+e^{-2 x}(b)$.
using $y(0)=1 ; y(0)=1$,(1) and (2) gives
$a=1$ and $b=3$
$\therefore y=(1+3 x) e^{-2 x}$
at $x=1, y=e^{-2}=0.541 \simeq$
37. Ans. C.

Parcel will be lost if
a. it is lost by the first post office
b. it is passed by first post office but lost by the second post office
Prob (parcel is lost) $=\frac{1}{5}+\frac{4}{5} \times \frac{1}{5}=\frac{9}{25}$
P (Parcel lost by second post if it passes first post office)
$=P$ (Parcel passed by first post
office) $\times P($ Parcel lost by second post office $)=\frac{4}{5} \times \frac{1}{5}=\frac{4}{25}$
Prob(parcel lost by $2^{\text {nd }}$ post office \mid parcel lost)=
$\frac{4 / 25}{9 / 25}=\frac{4}{9}=0.44$
38. Ans. D.

If $f(t) \leftrightarrow F(s)$
Thenif $(t) \leftrightarrow \frac{-d}{d s} F(s)$
$=\frac{-d}{d s}\left(\frac{1}{s^{2}+s+1}\right)$
$=\frac{-(2 s+1)}{\left(s^{2}+s+1\right)^{2}}=\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$
Alternative Way:
$F(s)=\frac{1}{s^{2}+s+1}$
$L[g(t)=t . f(t)]=-\frac{d}{d s}[F(s)]$
(using multiplication by t)
$=\frac{2 s+1}{\left(s^{2}+s+1\right)^{2}}$
39. Ans. C.

Let x (opposite side), y (adjacent side) and z
(hypotenuse) of a right angled triangle.
Given $Z+y=K$ (constant) $\ldots \ldots$ (1) and angle between them say ' θ ' then Area,
$A=\frac{1}{2} x y=\frac{1}{2}(z \sin \theta)(z \cos \theta)=\frac{z^{2}}{4} \sin 2 \theta$
$\operatorname{Now}(1) \Rightarrow z+z \sin \theta=k \Rightarrow z=\frac{k}{1+\sin \theta}$
$\therefore A=\frac{k^{2}}{4}\left[\frac{\sin 2 \theta}{(1+\sin \theta)^{2}}\right]$
In order to have maximum area, $\frac{d A}{d \theta}=0$
$\Rightarrow \frac{k^{2}}{4}\left[\frac{(1+\sin \theta)^{2}(2 \cos \theta)-\sin 2 \theta(\cos \theta) \cdot 2(1+\sin \theta)}{(1+\sin \theta)^{4}}\right]=0$
$\Rightarrow \theta=\frac{\pi}{6}=30^{\circ}$
40. Ans. B.

By nodal method,

$$
\begin{aligned}
& \frac{V-10^{\circ}}{R}+\frac{V}{(1 / j \omega c)}+\frac{V}{(2 / j \omega c)}=0 \\
& V\left[\frac{1}{R}+j \omega c+\frac{j \omega c}{2}\right]=\frac{10^{\circ}}{R} \\
& V=\frac{2}{2+3 j \omega R C} \\
& Y=\frac{V}{2} \Rightarrow \frac{2}{2+3 j \omega 3 R C} \\
& \text { given }|A(\omega)|=\frac{1}{4} \Rightarrow \frac{1}{\sqrt{4+9 R^{2} c^{2} \cdot \omega}} \\
& \Rightarrow \omega=\frac{2}{\sqrt{3} R C}
\end{aligned}
$$

41. Ans. C.

For $t \rightarrow \infty$, i.e., at steady state, inductor will behave as a shot circuit and hence $V_{B}=5 . i_{x}$
By KCL at node $B,-10+V_{B}-2 i_{x}+i_{x}=0 \Rightarrow i_{x}=\frac{50}{8}$
$V_{0}(t)=5 i_{x}(t) \Rightarrow V_{0}(t)=\frac{250}{8}=31.25$ volts
42. Ans. B.

\rightarrow For an infinite ladder network, if all resistance are having same value of R
Then equivalent resistance is $\left(\frac{1+\sqrt{5}}{2}\right) \cdot R$
\rightarrow For the given network, we can split in to R is in series with $R_{\text {equivalent }}$

$\Rightarrow R_{e q u}=R+1.618 R \Rightarrow \frac{R_{e q u}}{R}=2.618$
43. Ans. C.

For the two-part network
$Y=$ matrix $=\left[\begin{array}{cc}\frac{1}{30}+\frac{1}{10} & \frac{-1}{30} \\ \frac{-1}{30} & \frac{1}{60}+\frac{1}{30}\end{array}\right]$
$Z_{\text {matrix }}=[Y]^{-1}$
$Z=\left[\begin{array}{cc}0.1333 & -0.0333 \\ -0.0333 & 0.05\end{array}\right]^{-1}$
$Z=\left[\begin{array}{cc}9 & 6 \\ 6 & 24\end{array}\right]$
44. Ans. A.
$P=N_{A}-N_{D}=1 \times 10^{18}-1 \times 10^{15}=9.99 \times 10^{17}$
$\eta=\frac{\eta_{i}^{2}}{P}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{9.99 \times 10^{17}}=225.2 / \mathrm{cm}^{3}$
45. Ans. B.

$$
\begin{aligned}
& I_{C_{1}}=I_{C_{2}}(\text { given }) \\
& I_{S_{1}} e^{\frac{V_{B E_{1}}}{V_{T}}}=I_{S_{2}} e^{V_{B E_{2}} / V_{T}} \\
& e^{\left(V_{B E_{1}}-V_{B E_{2}}\right) / V_{T}}=\frac{I_{S_{1}}}{I_{S_{2}}} \\
& V_{B E_{1}}-V_{B E_{2}}=V_{T} \ln \frac{I_{S_{1}}}{I_{S_{2}}} \\
& =26 \times 10^{-3} 1 n\left[\frac{300 \times 300}{0.2 \times 0.2}\right] \because \\
& \left(V_{B E_{1}}-V_{B E_{2}}\right)=381 \mathrm{mV}
\end{aligned}
$$

46. Ans. D.
47. Ans. B.
$A_{V}=\frac{R_{E}}{r_{e}+R_{E}}=\frac{R_{E}}{\frac{V_{T}}{I_{E}}+R_{E}}=\frac{I_{E} R_{E}}{V_{T}+I_{3} R_{E}}$
$\therefore \quad A_{V}=\frac{I_{C} R_{E}}{V_{T}+I_{C} R_{E}}(\because \simeq$
$\therefore I_{C} R_{E} \gg U_{T} \Rightarrow A_{V}$ in almost constant
48. Ans. C.

Input impedance of CB amplifier, $z_{i}=r_{e}=\frac{V_{1}}{I_{E}}$
$\Rightarrow 50=\frac{25 \mathrm{mV}}{I_{E}}$
$\left(\because \quad ;\right.$ received from 50Ω antenna and $\left.V_{T}=25 \mathrm{mV}\right)$
$\Rightarrow I_{E}=\frac{25 \mathrm{mV}}{50 \Omega}=0.5 \mathrm{~mA}$
49. Ans. D.

$$
\begin{aligned}
& \because \quad h, I_{B} \text { is neglected } \\
& \therefore V_{B}=12 \times \frac{10 k}{10 k+5 k}=8 \mathrm{~V} \\
& \\
& \quad V_{E}=V_{B}-0.7=7.3 \mathrm{~V} \\
& \therefore V_{C E}=12-7.3=4.7 \mathrm{~V}
\end{aligned}
$$

\therefore maximum undistorted $V_{0}(p-p)=2 \times 4.7 \mathrm{~V}=9.4 \mathrm{~V}$
50. Ans. C.
$Y=\bar{A} \bar{B} C D+\bar{A} B C D+A B \bar{C}$
Remaining combinations of the select lines will produce output 0 .
So, $Y=\bar{A} C D(\bar{B}+B)+A B \bar{C}$
$=\bar{A} C D+A B \bar{C}$
$=A B \bar{C}+\bar{A} C D$

51. Ans. D.

This is 16 -bit ripple carry adder circuit, in their operation carry signal is propagating from $1^{\text {st }}$ stage FAO to last
state FA15, so their propagation delay is added together but sum result is not propagating. We can say that next stage sum result depends upon previous carry.
So, last stage carry $\left(C_{15}\right)$ will be produced after $16 \times 12 \mathrm{~ns}$ $=192 \mathrm{~ns}$
Second last stage carry $\left(C_{14}\right)$ will be produced after 180
ns.
For last stage sum result $\left(S_{15}\right)$ total delay $=180 \mathrm{~ns}+$
$15 n s=195 n s$
So, worst case delay $=195 \mathrm{~ns}$
52. Ans. A.

Let the opcode of STA is XXH and content of accumulator is YYH .
Instruction: STA 1234 H
Starting address given $=1$ FFEH
So, the sequence of data and addresses is given below:
Address (in hex) : Data (in hex)

$$
\left\{\begin{array}{r|l|l}
1 \mathrm{~F} & \mathrm{~A}-\mathrm{A}_{0} \\
1 \mathrm{FE} \mathrm{H} & \rightarrow \mathrm{XXH} \\
20 & \text { FF H } \rightarrow 34 \mathrm{H} \\
12 & 30 \mathrm{H} \rightarrow 12 \mathrm{H} \\
34 \mathrm{H} \rightarrow \mathrm{YYH}
\end{array}\right.
$$

53. Ans. B.

Given, $H(s)=\frac{1}{s^{2}+s-6}=\frac{1}{(s+3)(s-2)}$
It is given that system is stable thus its ROC includes $j \omega$ axis. This implies it cannot be causal, because for causal system ROC is right side of the rightmost pole.
\Rightarrow Poles at $\mathrm{s}=2$ must be removes so that it can be become causal and stable simultaneously.
$\Rightarrow \frac{1}{(s+3)(s-2)}(s-2)=\frac{1}{s+3}$
Thus, $H_{1}(s)=s-2$
54. Ans. B.

Given differential equation
$s^{2} y(s)+\alpha s y(s)+\alpha^{2} y(s)=x(s)$
$\Rightarrow \frac{y(s)}{x(s)}=\frac{1}{s^{2}+\alpha s+\alpha^{2}}=H(s)$

$$
\begin{aligned}
& g(t)=\alpha^{2} \int_{0}^{t} h(z) d z+\frac{d}{d t} h(t)+\alpha h(t) \\
& =\alpha^{2} \frac{H(s)}{s}+S H(s)+\alpha H(s) \\
& =\alpha^{2} \frac{1}{s\left(s^{2}+\alpha s+\alpha^{2}\right)}+s \frac{1}{\left(s^{2}+2 s+\alpha^{2}\right)}+\frac{\alpha}{s^{2}+\alpha s+\alpha^{2}} \\
& =\frac{\alpha^{2}+\alpha s+s^{2}}{s^{2}+\alpha s+\alpha^{2}}=\frac{1}{s} \\
& \text { No.of poles }=1
\end{aligned}
$$

55. Ans. B.

This can be solve by directly using option and satisfying the condition given in question
$X=\operatorname{DFT}(x)$
$D_{F T}\left(D_{F T}(x)\right)=D F T(X)=\frac{1}{N} \sum_{n=0}^{N-1} X[n] e^{-j \frac{2 \pi}{N} n k}$
DFT y[llllll 12314$]$

$$
X=\frac{1}{\sqrt{4}}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & +j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{c}
10 \\
2+2 j \\
2 \\
-2-j 2
\end{array}\right]
$$

DFT of (x) will not result in [11 2334$]$
Try with DFT of Y $\left.1 \begin{array}{lll}1 & 3 & 2\end{array}\right]$
$X=\frac{1}{\sqrt{4}}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & +j & -1 & -j\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{c}8 \\ -2 \\ 0 \\ -2\end{array}\right]=\left[\begin{array}{c}4 \\ -1 \\ 0 \\ -1\end{array}\right]$
DTF of $\left[\begin{array}{c}4 \\ - \\ 0 \\ -1\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & +j & -1 & -j\end{array}\right]\left[\begin{array}{c}4 \\ -1 \\ 0 \\ -1\end{array}\right]$

$$
=\frac{1}{2}\left[\begin{array}{l}
2 \\
4 \\
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
2
\end{array}\right]
$$

Same as x
Then ' B ' is right option
56. Ans. D.

Given state model,
$\left[\begin{array}{l}\dot{x}_{1}(t) \\ \dot{x}_{2}(t)\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
$A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
$\phi(t) \Rightarrow$ state transistion matrix
$\phi(t)=L^{-1}\left[(S I-A)^{-1}\right]$
$[S I-A]^{-1}=\left[\begin{array}{cc}s & -1 \\ 0 & s\end{array}\right]^{-1} \Rightarrow \frac{1}{s^{2}}\left[\begin{array}{ll}s & 1 \\ 0 & s\end{array}\right]$
$\phi(t)=L^{-1}\left[\begin{array}{cc}1 / s & 1 / s^{2} \\ 0 & 1 / s\end{array}\right]$
$\phi(t)=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]$
57. Ans. A.
$G_{P}(s)=\frac{p s^{2}+3 p s-2}{s^{2}+(3+p) s+(2-p)}$
By R H criteria
The characteristic equation is $s^{2}+(3+p) s+(2-p)=0$
i.e. $s^{2}+(3+p) s+(2-p)=0$

$$
\begin{array}{c|l}
s^{2} & (2-p) \\
s^{1} & (3+\phi) \\
s^{0} & 0 \\
(2-p) &
\end{array}
$$

For stability, first column elements must be positive and non-zero
i.e. $(1)(3+p)>0 \Rightarrow p>-3$
and $(2)(2-p)>0 \Rightarrow p<2$
i.e. $-3<p<2$

The maximum value of p unit which G_{P} remains stable is 2
58. Ans. C.

We know that the co-ordinate of point A of the given root locus i.e., magnitude condition
$|G(s) H(s)|=1$
Here, the damping factor $\xi=0.5$ and the length of $\mathrm{OA}=$ 5
$\xi=0.5$
Then in the right angle triangle

$\cos \theta=\frac{O X}{O A} \Rightarrow \cos 60=\frac{O X}{0.5} \Rightarrow O X=\frac{1}{4}$
$\Rightarrow \sin \theta=\frac{A X}{O A} \Rightarrow \sin 60=\frac{A X}{0.5} \Rightarrow A X=\frac{\sqrt{3}}{4}$
So, the co-ordinate of point A is $-1 / 4+j \sqrt{3} / 4$
Substituting the above value of A in the transfer function and equating to 1 i.e. by magnitude condition,

$$
\begin{aligned}
& \left|\frac{k}{s(s+1)^{2}}\right|_{s=-1 / 44^{j \sqrt{3}} / 4}=1 \\
& k=\sqrt{\frac{1}{16}+\frac{3}{16}} \cdot\left(\sqrt{\frac{9}{16}+\frac{3}{16}}\right)^{2} \\
& k=0.375
\end{aligned}
$$

59. Ans. C.
$H_{1}: x=+1 ; H_{0}: x=-1$
$P\left(H_{1}\right)=0.75 ; P\left(H_{0}\right)=0.25$
Received signal $\gamma=\mathrm{X}+\mathrm{Z}$
Where $Z-N(0,-2) ; f_{Z}(z)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-Z^{2} / 2 \sigma^{2}}$
Received signal $\gamma= \begin{cases}1+Z & \text { if } X=1 \\ -1+Z & \text { if } X=-1\end{cases}$
$f_{\gamma}\left(y / H_{1}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{1}{2 \sigma^{2}}(\gamma-1)^{2}}$
$f_{\gamma}\left(y / H_{0}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{1}{2 \sigma^{2}}(\gamma+1)^{2}}$
At optimum threshold $y_{\text {opt }}$: for minimum probability of error
$\left.\frac{f_{\gamma}\left(y / H_{1}\right)}{f_{\gamma}\left(y / H_{0}\right)}\right|_{y=o p t}=\frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}$
$\left.e^{\frac{1}{2 \alpha^{2}}\left[(\gamma-1)^{2}-(\gamma-+)^{2}\right]}\right|_{y_{o p t}}=\frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}$
$e^{+2 y_{\text {op }} / \sigma^{2}}=\frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}$
$y_{\text {opt }}=\frac{\sigma^{2}}{2} 1_{n}\left(\frac{P\left(H_{0}\right)}{P\left(H_{1}\right)}\right)=\frac{-1.1 \sigma^{2}}{2}=-0.55 \sigma^{2}$
$y_{\text {opt }}=$ Optimum threshold
$y_{\text {opt }}<0 \therefore$ Threshold is negative.
60. Ans. D.

Given channel $z \geq 0$, then $\int_{s} \nabla$

We have to determine, $P\{x=0 / y=0\}$

$$
\begin{aligned}
P\{x=0 / y=0\} & =\frac{P\{y=0 / x=0\} P\{x=0\}}{P\{y=0\}} \\
& =\frac{1.1 / 2}{1.1 / 2+0.25 \times \frac{1}{2}}=\frac{4}{5}=0.8
\end{aligned}
$$

61. Ans. C.

Bandwidth requirement for m -level PSK $=\frac{1}{T}(1+\alpha)$
[Where T is symbol duration. α is roll of factor]
$\Rightarrow \frac{1}{T}(1+\alpha)=100 \times 10^{3}$
$\alpha=1[100 \%$ excess bandwidth]
$\Rightarrow \frac{1}{\mathrm{~T}}(2)=100 \times 10^{3}$
$\left.\begin{aligned} \Rightarrow \mathrm{T} & =\frac{2}{100 \times 10^{3}} \\ & =20 \mu \mathrm{sec}\end{aligned} \right\rvert\,=\frac{1}{200 \times 10^{3}}=0.5 \times 10^{-5}=5 \times 10^{-6} \mathrm{sec}$
Bit duration $=\frac{\text { Symbol duration }}{\log _{2} m}$
$\Rightarrow \log _{2} m=\frac{20 \times 10^{-6} \mathrm{sec}}{5 \times 10^{-6}}=4 \Rightarrow M=16$
62. Ans. C.
$X \in[-a, a]$ and $P(x=-a)=P(x=a)=1 / 2$
$\gamma=X+Z \rightarrow$ Received signal

$$
\begin{aligned}
& \mathrm{Z} \sim \mathrm{~N}(\beta \mathrm{X}, 1) \\
& \left.\mathrm{f}_{\mathrm{Z}}(\mathrm{z})=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}(\mathrm{Z}-\beta \mathrm{X})^{2}} \right\rvert\, \mathrm{Q}(\mathrm{a})=1 \times 10^{-8} \\
& \mathrm{Q}(\mathrm{a}) \approx \mathrm{e}^{-0^{2} / 2}
\end{aligned} \gamma_{\gamma=\left\{\begin{array}{cc}
-\mathrm{a}+\mathrm{z} & \text { if } \mathrm{x}=-\mathrm{a} \\
\mathrm{a}+\mathrm{z} & \text { if } \mathrm{x}=+\mathrm{a}
\end{array}\right.}^{\ddot{H_{1}}: x=+a} \begin{aligned}
& H_{0}: x=-a
\end{aligned}
$$

and Threshold $=0$
$f_{\gamma}\left(y / H_{1}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y-a(1+\beta))^{2}}$
$f_{\gamma}\left(y / H_{0}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y+\alpha(1+\beta))^{2}}$
BER :

$$
\begin{aligned}
& P_{e}=P\left(H_{1}\right) P\left(e / H_{1}\right)+P\left(H_{0}\right) P\left(e / H_{0}\right) \\
& =\frac{1}{2} \int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y-a(1+\beta))^{2}} d y+\frac{1}{2} \int_{-0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(y+a(1+\beta))^{2}} \\
& \quad d y=Q(a(1+\beta)) \\
& \beta=0 \\
& P_{e}=Q(a)=1 \times 10^{-8}=e^{-a^{2} / 2} \Rightarrow a=6.07 \\
& \beta=-0.3 \\
& P_{\varepsilon}=Q(6.07(1-0.3))=Q(4.249) \\
& P_{e}=e^{-(4.249)^{2} / 2}=1.2 \times 10^{-4} \\
& P_{e} \simeq 10^{-4} .
\end{aligned}
$$

63. Ans. D.

A
($0 \mathrm{kV} / \mathrm{cm}, 20 \mathrm{kV} / \mathrm{cm}$)
$\left(5 \times 10^{-4} \mathrm{kV} / \mathrm{cm}, 40 \mathrm{kV} / \mathrm{cm}\right)$
$E-20=\frac{40-20}{5 \times 10^{-4}}(x-0) \Rightarrow E=4 \times 10^{4} x+20$
$V_{A B}=-\int_{A}^{B} E . d 1=-\int_{A}^{5 \times 10^{-4 c m}}\left(4 \times 10^{4} x+20\right) d x$
$=-\left.\left(4 \times 10^{4} \frac{x^{2}}{2}+20 x\right)\right|_{0} ^{5 \times 10^{-4}}=-\left(2 \times 10^{4} \times 25 \times 10^{-8}+20 \times 5 \times 10^{-4}\right)$
$=-\left(50 \times 10^{-4}+100 \times 10^{-4}\right)=-150 \times 10^{-4} \mathrm{kV}$
$\Rightarrow V_{A B}=-15 \mathrm{~V}$
64. Ans. C.
$\int_{s} \nabla \times \vec{F} \cdot d \vec{s}=\oint_{C} \vec{F} \cdot d \vec{r}$
(using stoke's theorem and C is closed curve i.e., $x^{2}+y^{2}=1, z=0$
$\Rightarrow x=\cos \theta, y=\sin \theta$ and $\theta: 0$ to 2π
$=\oint_{C} z d x+x d y+y d z$
$=\oint_{C} x d y=\int_{0}^{2 \pi} \cos \theta(\cos \theta d \theta)$
$=\frac{1}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)_{0}^{2 \pi}=\pi \simeq 3.14$
65. Ans. D.

Given $E=-\left(2 y^{3}-3 y z^{2}\right) a_{x}\left(6 x y^{2}-3 x z^{2}\right) a_{y}+6 x y z . a_{z}$ By verification option (D) satisfy $E=-\nabla \nabla$

