1. Ans. C.

Diversity is shown in terms of difference language
2. Ans. B.
3. Ans. B.
4. Ans. C.
$81-54=27 ; 27 \times \frac{2}{3}=18$
$54-36=18 ; 18 \times \frac{2}{3}=12$
$36-24=12 ; 12 \times \frac{2}{3}=8$
$\therefore 24-8=16$
5. Ans. D.
6. Ans. B.
7. Ans. D.

It is not mentioned that elephant is the largest animal
8. Ans. B.
$4 \mathrm{~km} / \mathrm{hr}$.
Speed of man=8
Left distance $=\mathrm{d}$
Time taken $=\frac{d}{8}$
Upstream
Speed of stream = s
\Rightarrow speed upstream $=S^{\prime}=(8-s)$
$t^{\prime}=\left(\frac{d}{8-s}\right)$
Downstream:
speed downstream $=t^{\prime \prime}=\frac{d}{8+s}$
$\Rightarrow 3 t^{\prime}=t^{\prime \prime}$
$\Rightarrow \frac{3 d}{8-s}=\frac{d}{8+s}$
$\Rightarrow \frac{3 d}{8-s}=\frac{d}{8+s}$
$\Rightarrow s=4 \mathrm{~km} / \mathrm{hr}$
9. Ans. B.

Total expenditure $=\frac{15}{100} \times=4,50,000$
$x=3 \times 10^{6}$
Profit=10 lakhs
So, total selling price $=40,00,000$..
Total purifies=200 ... (2)
S.P of each purifier $=(1) /(2)=20,000$
10. Ans. C.

Probability for one bulb to be non defective is $\frac{95}{100}$
\therefore Probabilities that none of the bulbs is defectives $\left(\frac{95}{100}\right)^{4}=0.8145$
11. Ans. A.
$f^{1}(x)=0 \Rightarrow \frac{1}{1+x}-1=0$
$\Rightarrow \frac{-x}{1+x}=0 \Rightarrow x=0$
and $f^{11}(x)=\frac{-1}{(1+x)^{2}}<$ at $x=0$
12. Ans. A.
A) $\frac{d y}{d x}+x y=e^{-x}$ is a first order linear equation (nonhomogeneous)
B) $\frac{d y}{d x}+x y=0$ is a first order linear equation (homogeneous (C), (D) are non linear equations
13. Ans. B.
14. Ans. C.
P [fourth head appears at the tenth toss] $=P$ [getting 3 heads in the first 9 tosses and one head at tenth toss]
$=\left[9 c_{3} \cdot\left(\frac{1}{2}\right)^{9}\right] \times\left[\frac{1}{2}\right]=\frac{21}{256}=0.082$
15. Ans. C.
$\frac{\partial z}{\partial x}=y\left[x \times \frac{1}{x y} \times y+\ln x y\right]=y(1+\ln x y)$
and $\frac{\partial z}{\partial y}=x(1+\ln x y) \Rightarrow x \frac{\partial z}{\partial x}=y \frac{\partial z}{\partial y}$
16. Ans. A.

In a series RC circuit,
\rightarrow Initially at $t=0$, capacitor charges with a current of $\frac{V_{s}}{R}$ and in steady state at $t=\infty$, capacitor behaves like open circuit and no current flows through the circuit \rightarrow So the current $\mathrm{i}(\mathrm{t})$ represents an exponential decay function

17. Ans. C.

Apply KCL at node $V, \frac{V-5}{5}-1+\frac{V}{15}=0$

$$
\Rightarrow V=\frac{30}{4} \text { volts }
$$

\Rightarrow current $I=\frac{V}{15} \Rightarrow \frac{2}{4} \Rightarrow 0.50$ Amperes
18. Ans. C.
19. Ans. D.

Recombination rate, $R=B\left(n_{n_{0}}+n_{n}\right)\left(P_{n_{0}}+P_{n}\right)$ Electron and hole concentrations respectively under thermal equilibrium
$n_{n_{0}} \& P_{n_{0}}$ Excess elements and hole concentrations respectively
20. Ans. C.

From Einstein relation,

$$
\begin{aligned}
& \frac{D P}{\mu_{P}}=\frac{k J}{q} \\
\Rightarrow & D_{P}=26 \mathrm{mV} \times 500 \mathrm{~cm}^{2} / v-s=13 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

21. Ans. A.

Trans conductance amplifier must have $z_{1}=\infty$ and $z_{0}=\infty$ ideally
22. Ans. A.

KVL in base loop gives,
$I_{B}=\frac{10-0.7}{100 \mathrm{~K}}=93 \mu \mathrm{~A}$
$\Rightarrow I_{C}=\beta I_{B}=50 \times 93 \mu A=4.65 \mathrm{~mA}$
from figure, $V_{0}=I_{C} R_{C}$
$\Rightarrow R_{C}=\frac{V_{0}}{I_{C}}=\frac{5 \mathrm{~V}}{4.65 \mathrm{~mA}}=1.075 \Omega$
23. Ans. C.
$V_{d c}=V_{m}-\frac{I_{d c}}{4 f c}$
$I_{d c} R_{L}=V_{m}-\frac{I_{d c}}{4 f c}$
$\Rightarrow I_{d c}=\frac{10}{100+\frac{1}{4 \times 50 \times 4 \times 10^{-3}}}=0.09 \mathrm{~A}$
24. Ans. B.

Maximum quantization error is $\frac{\text { step }- \text { size }}{2}$
step-size $=\frac{8-10}{16}=\frac{1}{2}=0.5 \mathrm{~V}$
Quantization error $=0.25 \mathrm{~V}$
25. Ans. D.

Latches are used to construct Flip-Flop. Latches are level triggered, so if you use two latches in cascaded with inverted clock, then one latch will behave as master and another latch which is having inverted clock will be used as a slave and combined it will behave as a flip-flop. So given circuit is implementing Master-Slave D flip-flop
26. Ans. D.

Output of first MUX $=w \bar{s}_{1}+w \bar{s}_{2}=w \oplus s_{1}$
Let $Y=w \oplus s_{1}$
Output of second MUX $=Y \bar{S}_{2}+\bar{Y} S_{2}$

$$
\begin{gathered}
=Y \oplus s_{2} \\
=w \oplus s_{1}+s_{2}
\end{gathered}
$$

27. Ans. A.
$x(t)=\cos (10 \pi t)+\cos (30 \pi t), F_{s}=20 H z$
Spectrum of $x(t)$

Spectrum of sampled version of $x(t)$

After LPF, signal will contain 5 and 15 Hz component only 28. Ans. B.

For an all pass system, pole $=\frac{1}{\text { zero } *}$ or zero $=\frac{1}{\text { pole } *}$

$$
\begin{aligned}
& \text { pole }=a \\
& \text { zero }=\frac{1}{b} \\
& \Rightarrow \frac{1}{2}=\frac{1}{a^{*}} \text { or } b=a^{*}
\end{aligned}
$$

29. Ans. A.

Since $m(t)$ is a base band signal with maximum frequency 5 KHz , assumed spreads as follows:

$\because \quad \imath(t) \cos (40000 \pi t) \xrightarrow{7} m(f) \frac{* 1}{2}$

$$
[\delta(f-20 k)+\delta(f+20 k)]
$$

$\therefore y(f)=\frac{1}{2}[M(f-20 k)+M(f+20 k)]$
Thus the spectrum of the modulated signal is as follows:

If $\mathrm{y}(\mathrm{t})$ is sampled with a sampling frequency' f_{s} ' then the resultant signal is a periodic extension of successive replica of $y(f)$ with a period ' $f s^{\prime}$.
It is observed that 10 KHz and 20 KHz are the two sampling frequencies which causes a replica of $M(f)$ which can be filtered out by a LPF.
Thus the minimum sampling frequency $\left(f_{s}\right)$ which extracts $m(t)$ from $g(f)$ is 10 KHz .
30. Ans. C.

By drawing the signal flow graph for the given block diagram

Number of parallel paths are three
Gains $P_{1}=G_{1} G_{2}, P_{2}=G_{2}, P_{3}=1$
By mason's gain formula,

$$
\begin{aligned}
& \frac{C(s)}{R(s)}=P_{1}+P_{2}+P_{3} \\
\Rightarrow & G_{1} G_{2}+G_{2}+1
\end{aligned}
$$

31. Ans. A.
$\frac{Y(s)}{X(s)}=\frac{S-2}{S+3}$
$\Rightarrow S Y(s)+3 Y(s)=S \times(s)-2 X(s)$
Due to initial condition, we can write above equation as
$S y(s)-y(0)+3 y(s)=s x(s)-x\left(0^{-}\right)-2 x(s)$
$y\left(0^{-}\right)=-2, x\left(0^{-}\right)=0 \quad\left[x(t)=3 e^{2 t} u(t)\right]$
$\Rightarrow S y(s)+2+3 y(s)=(s-2)\left(\frac{-3}{s-2}\right)$
$(s+3) y(s)=-3-2 \Rightarrow y(s)=\frac{-5}{5+3}$
$\Rightarrow y(t)=-5 e^{-3 t} u(t)$
$y(\infty)($ steadysate $)=0$
Alternative Way:
$H(s)=\frac{s-2}{s+3} ; X(t)=-3 e^{2 t} \cdot u(t)$
$\therefore X(s)=\frac{-3}{s-2} \Rightarrow Y(s)=\frac{-3}{s+3}$
$\left.y(t)\right|_{a t t=\infty} \Rightarrow y(\infty)=\lim _{\delta \rightarrow 0} S \cdot y(s)=\lim _{\delta \rightarrow 0} \frac{-3}{s+3}$
$y(\infty)=0$
32. Ans. C.

Phase response of pass band waveform
$\phi(f)=2 \pi \alpha\left(f-f_{c}\right)-2 \pi \beta f_{c}$
Group delay $t_{y}=\frac{-d \phi(f)}{2 \pi d f}=\alpha$
Thus ' α ' is actual signal propagation delay from transmitter to receiver
33. Ans. A.

Instantaneous phase
$\phi_{1}(t)=2 \pi f_{c} t+\beta_{1} \sin 2 \pi f_{1}+\beta_{2} \sin 2 \pi f_{t}$
Instantaneous frequency $f_{i}(t)=\frac{d}{d t} \phi_{i}(t) \times \frac{1}{2 \pi}$
$=f_{c}+\beta_{1} f_{1} \cos 2 \pi f_{1} t+\beta_{2} f_{2} \cos 2 \pi f_{2} t$
Instantaneous frequency deviation
$=\beta_{1} f_{1} \cos 2 \pi f_{1} t+\beta_{2} f_{2} \cos 2 \pi f_{2} t$
Maximum $\Delta F=\beta_{1} f_{1}+\beta_{2} f_{2}$
34. Ans. C.
$f_{c}\left(T E_{21}\right)=\frac{C}{2} \sqrt{\left(\frac{2}{9}\right)^{2}+\left(\frac{1}{b}\right)^{2}}$
$=\frac{3 \times 10^{10}}{2} \sqrt{\left(\frac{2}{5}\right)^{2}+\left(\frac{1}{3}\right)^{2}}$
$=1.5 \times 10^{10} \sqrt{0.16+0.111}$
$=0.52 \times 1.5 \times 10^{10}$
$=7.81 \mathrm{GHz}$
$=7810 \mathrm{MHz}$
35. Ans. C.

Signal distortion implies impedance mismatch at both ends. i.e.,
$Z_{T} \neq Z_{0}$
$Z_{R} \neq Z_{0}$
36. Ans. C.
$f^{1}(x)=6 x^{2}-18 x+12=0 \Rightarrow x=1,2 \in[0,3]$
Now $f(0)=-3 ; f(3)=6$ and $f(1)=2 ; f(2)=1$
Hence, $f(x)$ is maximum at $x=3$ and the maximum value is 6
37. Ans. B.

Consider, $A\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$ which is real symmetric matrix
Characteristic equation is $|A-\lambda 1|=0 \quad \Rightarrow(1+\lambda)^{2}-1=0$
$\Rightarrow \lambda+1= \pm 1$
$\therefore \lambda=0,-2$ (not positive)
(B) is not true (A), (C), (D) are true using properties of eigen values
38. $A n s=B$

Let the first toss be Head.
Let x denotes the number of tosses(after getting first head) to get first tail.
We can summarize the even as:
Event $\quad x \quad \operatorname{Probability}(p(x))$
(After getting first H)

T	1	$1 / 2$
HT	2	$1 / 2 * 1 / 2=1 / 4$
HHT	3	$1 / 8$

and so on. \qquad

$$
\begin{align*}
& \mathrm{E}(x)=\sum_{x=1}^{\infty} x p(x)=1 x \frac{1}{2}+2 x \frac{1}{2}+3 x \frac{1}{8} \ldots \\
& \text { Let }, S=1 x \frac{1}{2}+2 x \frac{1}{2}+3 x \frac{1}{8} \ldots \tag{I}\\
& \Rightarrow \frac{1}{2} S=\frac{1}{4}+2 x \frac{1}{8}+3 x \frac{1}{16} \ldots \tag{II}\\
& (I-I I) \text { gives } \\
& \left(1-\frac{1}{2}\right) S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \\
& \Rightarrow \frac{1}{2} S=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1 \\
& \Rightarrow S=2 \\
& \Rightarrow E(x)=2
\end{align*}
$$

i.e. The expected number of tosses (after first head) to get first tail is 2 and same can be applicable if first toss results in tail.
Hence the average number of tosses is $1+2=3$.
39. Ans. B.

Given $x_{1} x_{2}$ and x_{3} be independent and identically distributed with uniform distribution on [0,1]

$$
\begin{aligned}
& \text { Let } z=x_{1}+x_{2}-x_{3} \\
& \Rightarrow P\left\{x_{1}+x_{2} \leq x_{3}\right\}=P\left\{x_{1}+x_{2}-x_{3} \leq 0\right\} \\
& \quad=P\{z \leq 0\}
\end{aligned}
$$

Let us find probability density function of random variable z.

Since Z is summation of three random variable
x_{1}, x_{2} and $-x_{3}$
Overall pdf of z is convolution of the pdf of x_{1}, x_{2} and $-x_{3}$
$p d f$ of $\left\{x_{1}+x_{2}\right\}$

pdf of $-x_{3}$ is

$P\{z \leq 0\}=\int_{-1}^{0} \frac{(z+1)^{2}}{2} d z=\left.\frac{(z+1)^{3}}{6}\right|_{-1} ^{0}=\frac{1}{6}=0.16$
40. Ans. B.

Two blocks are connected in cascade, Represent in sdomain,

$F=W \bar{X}+\bar{W} X+\bar{Y} Z$
$\frac{v_{3}(s)}{v_{1}(s)}=\frac{R \cdot R}{\frac{1}{s c}\left[R+R+\frac{1}{S C}\right]+R\left[\frac{1}{S C}+R\right]}$
$=\frac{R \cdot R}{\frac{1}{S C} \cdot \frac{1}{S C}[2 R(S C)+1]+\frac{R}{S C}[1+R S C]}$
$=\frac{S^{2} C^{2} \cdot R \cdot R}{[1+2 R(S C)]+R S C+R^{2} S^{2} C^{2}}$
$=\frac{S^{2} .100 \times 100 \times 10^{-6} \times 10^{-6} \times 10 \times 10 \times 10^{3} \times 10^{3}}{S^{2} \times 100 \times 10^{6} \times 10^{4} \times 10^{-12}+3 S+100 \times 10^{-6} \times 10^{4}+1}$
$\frac{v_{3}(s)}{v_{1}(s)}=\frac{S^{2}}{1+3 S+S^{2}}$
41. Ans. D.

KVL for $V_{1} \& V_{2}$:

$$
\begin{align*}
& V_{1}-V_{2}=1000^{\circ} \tag{1}\\
& V_{1}=V_{2}+1000^{\circ}
\end{align*}
$$

KCL at super node:

$$
\begin{equation*}
-4 \underline{0^{\circ}}+\frac{V_{1}}{-j 3}+\frac{V_{2}}{6}+\frac{V_{2}}{j 6}=0 \tag{2}
\end{equation*}
$$

$$
\frac{V_{1}}{-j 3}+\frac{V_{2}}{6}+\frac{V_{2}}{j 6}=-400^{\circ}
$$

from $(1) \&(2), \frac{V_{2}+10 \underline{0^{\circ}}}{-j 3}+\frac{V_{2}}{6}+\frac{V_{2}}{j 6}=4 \underline{0^{\circ}}$
$V_{2}\left[\frac{1}{-j 3}+\frac{1}{6}+\frac{1}{j 6}\right]=40^{\circ}+\frac{10}{j 3}$
$\therefore V_{2}=(2-j 22)$ Volts
42. Ans. A.

Norton's equivalent impedance

$Z_{N}=\frac{1 * j \omega \cdot \frac{1}{2}}{1+j \omega \cdot \frac{1}{2}}+\frac{1}{j \omega \cdot 1}$
$=\frac{j \omega}{2+j \omega}+\frac{1}{j \omega}$
$Z_{N}=\frac{\left(2-\omega^{2}\right)+j \omega}{\left[2 j \omega-\omega^{2}\right]}$
$\Rightarrow Z_{N}=\frac{\left[\left(\omega^{2}-2\right)-j \omega\right] \cdot\left[\omega^{2}+2 j \omega\right]}{\left[\omega^{4}+4 \omega^{2}\right]}$
Equating imaginary term to zero i.e., $\omega^{3}-4 \omega=0$
$\Rightarrow \omega\left(\omega^{2}-4\right)=0 \Rightarrow \omega=2 r / \mathrm{sec}$
43. Ans. B

$R_{1}=\frac{(7.5)(5)+(3)(5)+(7.5)(3)}{7.5} \Omega$
$R_{1}=10 \Omega$
44. Ans. D.
$V_{b i}=V_{T} \ln \frac{N_{A} N_{D}}{n_{i}^{2}}=26 \mathrm{mv} \ln \left[\frac{5 \times 10^{18} \times 1 \times 10^{16}}{\left(1.5 \times 10^{10}\right)^{2}}\right]$
$=0.859 \mathrm{~V}$
$W=\sqrt{\frac{2 \varepsilon_{S} V_{b i}}{q}\left[\frac{N_{A}+N_{D}}{N_{A} N_{D}}\right]}=3.34 \times 10^{-5} \mathrm{~cm}$
45. Ans. C.

In linear region, $I_{D}=k\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]$
$\frac{\partial I_{D}}{\partial V_{G S}}=10^{-3}=k V_{D S} \because \quad$ a all,$\frac{V_{D S}^{2}}{2}$ is neglected
$\Rightarrow K=\frac{10^{-3}}{0.1}=0.01$
In saturation region, $I_{D}=\frac{1}{2} k\left(V_{G S}-V_{T}\right)^{2}$
$\sqrt{I_{D}}=\sqrt{\frac{k}{2}}\left(V_{G S}-V_{T}\right)$
$\frac{\partial \sqrt{I_{D}}}{\partial V_{G S}}=\sqrt{\frac{k}{2}}=\sqrt{\frac{0.01}{2}}=0.07$
46. Ans. C.
$E_{s}=\frac{2 \times 0.2}{0.5}=0.8 v / \mu m$
$E_{o x}=\frac{E_{s}}{E_{o x}} E_{s}=2.4 v / \mu m$
47. Ans. B.

KVL in base loop,
$5-I_{B}(50 k)-0.7=0$
$I_{B}=\frac{5-0.7}{50 k}=80 \mu \mathrm{~A}$
$\Rightarrow I_{C}=\beta I_{B}=50 \times 86 \mu \mathrm{~A}=4.3 \mathrm{~mA}$
$\therefore R_{C}=\frac{10-V_{C E}(\mathrm{sat})}{I_{C}}=\frac{10-0.2}{4.3 \mathrm{~mA}}$
$R_{C}=2279 \Omega$ and the BJT is in saturation
48. Ans. D.

Virtual ground and KCL at inverting terminal gives

$\frac{V_{2}-V_{1}}{R}+\frac{V_{2}}{2 R}+\frac{V_{2}-V_{0}}{3 R}=0$
$\frac{V_{0}}{3 R}=\frac{V_{2}}{R}+\frac{V_{2}}{3 R}+\frac{V_{2}}{2 R}-\frac{V_{1}}{R}$
$V_{0}=-3 V_{1}+\frac{11}{2} V_{2}$
49. Ans. B.

Transistor m_{1} switch from saturation to linear
$\Rightarrow V_{D S}=V_{G S}-V_{T}$; where $V_{D S}=V_{0}$ and $V_{G S}=V_{i}$
$\therefore V_{D S}=V_{0}=V_{i}-V_{T}$

Drain current $I_{D}=\frac{1}{2} \mu_{n} \cos \frac{w}{L}\left(V_{G S}-V_{T}\right)^{2}$
$\frac{V_{D D}-V_{0}}{10 K}=\frac{1}{2} \times 100 \times 10^{-6} \times 2\left(V_{G S}-0.5\right)^{2}$
$\frac{2-\left(V_{i}-0.5\right)}{10 \mathrm{~K}}=100 \times 10^{-6}\left(V_{i}-0.5\right)^{2}$
$\Rightarrow V_{i}=1.5 \mathrm{~V}$
50. Ans. B.

For an SRAM construction four MOSFETs are required (2PMOS and 2-NMOS) with interchanged outputs connected to each CMOS inverter. So option (B) is correct.
51. Ans. C

The output of the first MUX $=\bar{W} \times V_{c c}+W \bar{X} . V_{c c}$

$$
\begin{gathered}
\bar{W} X+W \bar{X}(\because \\
\quad=W \oplus X
\end{gathered}
$$

Let $Q=W \oplus X$

The output of the second MUX $=Q \cdot \bar{Y} \bar{Z}+Q \cdot \bar{Y} Z$

$$
\begin{aligned}
& =Q \cdot \bar{Y}(\bar{Z}+Z) \\
& =Q \cdot \bar{Y} \cdot 1=Q \cdot \bar{Y}
\end{aligned}
$$

Put the value of Q in above expression
$=(\bar{W} X+W \bar{X}) \cdot \bar{Y}$
$=\bar{W} X . \bar{Y}+\bar{W} X . \bar{Y}$
52. Ans. A.

X	Y	D	B
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

so, $D=X \oplus Y=\bar{X} Y+X \bar{Y}$ and $B=\bar{X} . Y$

53. Ans. B.
$\begin{aligned} H_{1}(z) & =\left(1-P z^{-1}\right)^{-1} \\ H_{2}(z) & =\left(1-q z^{-1}\right)^{-1} \\ H(z) & =\frac{1}{\left(1-P z^{-1}\right)}+r \frac{1}{\left(1-q z^{-1}\right)} \\ = & \frac{1-q z^{-1} r\left(1-P z^{-1}\right)}{\left(1-P z^{-1}\right)\left(1-P z^{-1}\right)}=\frac{(1+r)(q+r p) z^{-1}}{\left(1-P z^{-1}\right)\left(1-P z^{-1}\right)}\end{aligned}$
Zero of $H(z)=\frac{q+r p}{1+r}$
Since zero is existing on unit circle
$\Rightarrow \frac{q+r p}{1+r}=1$ or $\frac{q+r p}{1+r}=-1$
$\frac{-\frac{4}{2}+\frac{r}{2}}{1+r}=\operatorname{lor} \frac{-\frac{4}{2}+\frac{r}{2}}{1+r}=-1$
$-\frac{4}{2}+\frac{r}{2}=1+r \quad$ or $\quad-\frac{4}{2}+\frac{r}{2}=-1-r$
$\Rightarrow r=-\frac{5}{2} \Rightarrow \frac{r}{2}=-\frac{5}{4}$ or $\frac{3}{4}=\frac{-3 r}{2} r=-1 / 2 \Rightarrow r=-0.5$
$r=-\frac{5}{2}$ is not possible
54. Ans. A.
$h(t) \Leftrightarrow H(s)=\frac{1}{s+1} \Rightarrow h(t)=e^{-t} u(t)$
S_{1} : System is stable (TRUE)
Because $\mathrm{h}(\mathrm{t})$ absolutely integrable
$S_{2}: \frac{h(t+1)}{h(t)}$ is independent of time (TRUE)
$\frac{e^{-(t+1)}}{e^{-t}} \Rightarrow e^{-1}$ (independent of time)
S_{3} : A non-causal system with same transfer function is stable
$\frac{1}{s+1} \Leftrightarrow-e^{-t} u(-t)$ (a non-causal system) but this is not absolutely integrable thus unstable.
Only S_{1} and S_{2} are TRUE
55. Ans. B.

$$
\begin{aligned}
& X(z)=\frac{1}{\left(1-2 z^{-1}\right)}=\frac{1}{\left(1-2 z^{-1}\right)} \frac{1}{\left(1-2 z^{-1}\right)} \\
& x[n]=2^{n} u[n]^{*} 2^{n} u[n] \\
& x[n]=\sum_{k=0}^{n} 2^{K} \cdot 2^{(n-k)} \\
& \Rightarrow x[2]=\sum_{k=0}^{n} 2^{K} \cdot 2^{(2-k)}=2^{0} \cdot 2^{2}+2^{1} \cdot 2^{1}+2^{2} \cdot 2^{0} \\
& \quad=4+4+4=12
\end{aligned}
$$

Alternative Way:
$X(z)=\frac{1}{\left(1-2 Z^{-1}\right)^{2}}=\frac{Z^{2}}{(Z-2)^{2}}$
$X(n)=Z^{-1}\left[\begin{array}{cc}\frac{Z}{Z-2} & \frac{Z}{Z-2} \\ \downarrow & \downarrow \\ u(z) & v(z)\end{array}\right]$
$=\sum_{m=0}^{n} u_{m} \cdot V_{n-m}$
(using conduction theorem and $u_{a}=2^{n} ; v_{n}=2^{n}$)
$=\sum_{m=0}^{n} 2^{m} \cdot 2^{n-m}=2^{n}(n+1)$
$\therefore x(2)=12$
56. Ans. A.

Given $G(s)=\frac{4}{s+2} ; H(s)=\frac{2}{s+4}$
For unit step input,
$k_{p}=\lim _{s \rightarrow 0} G(s) H(s)$
$k_{p}=\lim _{s \rightarrow 0}\left(\frac{4}{s+2}\right)\left(\frac{2}{s+4}\right)$
$k^{p}=1$
steady state error $e_{s s}=\frac{A}{1+k_{p}}$
$e_{s s}=\frac{1}{1+1}$
$e_{s s}=\frac{1}{2} \Rightarrow 0.50$
57. Ans. B.

Apply linearity principle,
$\left[\begin{array}{l}3 \\ 5\end{array}\right]=a\left[\begin{array}{c}1 \\ -1\end{array}\right]+b\left[\begin{array}{l}0 \\ 1\end{array}\right] s$
$a=3 ; b=8$
$x(t)=\left[\begin{array}{cc}e^{-t} & -e^{-2 t} \\ -e^{-t} & 2 e^{-2 t}\end{array}\right]$
$\Rightarrow x(t)=\left[\begin{array}{l}11 e^{-t}-8 e^{-2 t} \\ -11^{-t}+16 e^{-2 t}\end{array}\right]$
58. Ans. B.

For transfer function $\frac{(s+4)}{(s+1)(s+2)(s+3)}$
From pole zero plot

59. Ans. C.

Shifting in time domain does not change PSD. Since PSD is Fourier transform of autocorrelation function of WSS process, autocorrelation function depends on time difference.
$X(t) \leftrightarrow R_{x}(z) \leftrightarrow S_{x}(f)$
$Y(t)=X(2 t-1) \leftrightarrow R_{y}(2 \zeta) \leftrightarrow \frac{1}{2} S_{x}\left(\frac{f}{2}\right)$
[time scaling property of Fourier transform]
60. Ans. C.
$S_{x}(f)$

After modulation with $\cos (16000 \pi t)$
$S_{y}(f)=\frac{1}{4}\left[S_{x}\left(f-f_{c}\right)+S_{x}\left(f-f_{c}\right)\right]$
This is obtain the power spectral density Random process $y(t)$, we shift the given power spectral density random process $x(t)$ to the right by f_{c} shift it to be the left by f_{c} and the two shifted power spectral and divide by 4.

After band pass filter of center frequency 8 KHz and BW of 2 kHz

Total output power is area of shaded region
$=2$ [Area of one side portion]
$=2[$ Area of triangle + Area of rec tangle $]$
$=\frac{2\left[-\frac{1}{2} \times 2 \times 10^{3} \times 0.5 \times 10^{-3}+2 \times 10^{3} \times 1 \times 10^{-3}\right]}{2}$
$=[0.5+2]=2.5$ watts
61. Ans. D.

Nyquist rate $=2 \times 50 \mathrm{~Hz}$
$=100$ samples $/ \mathrm{sec}$
$\Delta=\frac{m(t)_{\max }-m(t)_{\max }}{L} \Rightarrow L=\frac{\sqrt{2}-(-\sqrt{2})}{0.75}$
$L=\frac{2 \sqrt{2}}{0.75}=3.774=4$
No. of bits required to encode ' 4 ' levels $=2$ bits/level Thus, data rate $=2 \times 100=200$ bits $/ \mathrm{sec}$
62. Ans. A.

Let $P\{x=2\}=\frac{1}{3}, P\{x=0\}=\frac{2}{3}$
to find $H\left(Y_{1}\right)$ we need to know
$P\left\{y_{1}=0\right\}$ and $P\left\{y_{2}=0\right\}$
$P\left\{y_{1}=0\right\}=P\left\{y_{1}=0 / x_{1}=0\right\}$
$P\left\{x_{1}=0\right\} P\left\{y_{1}=0 / x_{1}=1\right\} P\left\{x_{1}=1\right\}$
$=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \times \frac{2}{3}=\frac{1}{2}$
$P\left\{y_{1}=0\right\}=\frac{1}{2}$
$\Rightarrow H\left(y_{1}\right)=\frac{1}{2} \log _{2}{ }^{2}+\frac{1}{2} \log _{2}{ }^{2}=1$

Similarly

$P\left\{y_{2}=0\right\}=\frac{1}{2}$ and $P\left\{y_{2}=0\right\}=\frac{1}{2}$
$\Rightarrow H\left\{y_{2}\right\}=1$
$\Rightarrow H\left\{y_{1}\right\}+H\left\{y_{2}\right\}=2$ bits
63. Ans. A.

$$
\begin{aligned}
& \operatorname{Curl} \vec{A}\left|\begin{array}{ccc}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos x \sin y & \sin x \cos y & 0
\end{array}\right| \\
& =0 \\
& \therefore|\operatorname{Curl} \vec{A}|=0
\end{aligned}
$$

Alternative Way:
Given $A=\cos x \sin y \hat{a}_{x}+\sin x \cos y \hat{a}_{y}$
$\nabla \times A=\left|\begin{array}{ccc}a_{x} & a_{y} & a_{z} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ \cos x \sin y & \sin x \cos y & 0\end{array}\right|$
$=a_{x}(0)-a_{y}(0)+a_{z}(\cos x \cos y-\cos x \cos y)=0$
$\therefore|\nabla \times A|=0$
64. Ans. D.

Given medium (1) is perfect conductor
Medium (2) is air
$\therefore \quad H_{1}=0$
From boundary conditions
$\left(H_{1}-H_{2}\right) \times a_{n}=K_{S}$
$\left.\begin{aligned} & H_{1}=0 \\ & a_{n}=a_{y}\end{aligned} \right\rvert\, K_{S}=2 \hat{a}_{x}$
$-H_{2} \times a_{y}=2 \hat{a}_{x}$
$-\left(H_{x} a_{x}+H_{y} a_{y}+H_{z} a_{z}\right) \times a_{y}=2 a_{x}$
$-H_{x} a_{z}+H_{z} a_{x}=2 a_{x}$
$\therefore H_{z}=2$
$H=2 a_{z}$
65. Ans. A.

Given $E=10 \cos (\omega t-3 x-\sqrt{3 z}) a_{y}$
$E=E_{0} e^{-j \beta\left(x \cos \theta_{x}+y \cos \theta_{y}+z \cos \theta_{z}\right)}$
So, $\beta_{x}=\beta \cos \theta_{x}=3$
$\beta_{y}=\beta \cos \theta_{y}=0$
$\beta_{z}=\beta \cos \theta_{z}=\sqrt{3}$
$\beta_{x}{ }^{2}+\beta_{y}{ }^{2}+\beta_{z}{ }^{2}=\beta^{2}$
$9+3=\beta^{2} \Rightarrow \beta=\sqrt{13}$
$\beta \cos \theta_{2}=\sqrt{3} \Rightarrow \cos \theta_{z}=\sqrt{\frac{3}{13}} \Rightarrow \theta_{z}=61.28=\theta_{i}$
$\frac{\sin \theta_{i}}{\sin \theta_{i}}=\sqrt{\frac{E_{2}}{E_{1}}} \Rightarrow \frac{\sin 61.28}{\sin \theta_{t}}=\sqrt{\frac{3}{1}} \Rightarrow \frac{0.8769}{\sqrt{3}}=\sin \theta_{t}$
$\theta_{t}=30.4 \Rightarrow \theta_{t} \simeq 30^{\circ}$

