1. Ans. C.
2. Ans. D.
3. Ans. B.
4. Ans. A.

If the standard deviation is less, there will be less deviation or batsman is more consistent
5. Ans. B.

6. Ans. D.

Difference of position: D
7. Ans. B.

Resident female in between 8 to 10 lakhs haven mentioned.
8. Ans. D.

For a train to cross a person, it taker sec rits 280 m . So, for second 60 seconds. il dir a travelled should be 840. Includ 728 Jt . len length of plates $=840-280=56$
9. Ans. D.

2004, $\frac{\text { limports-exports }}{\text { exports }} \quad{ }^{10}=\frac{1}{7}$
2005, $\frac{26}{76}=\frac{2}{7}$
2006, $\frac{20}{100}=\frac{1}{5}$
2007, $\frac{10}{100}=\frac{1}{11}$
10. Ans. B.
11. Ans. D.

Matrix multiplication is not commutative in general.
12. Ans. D.

Let $\mathrm{E}_{1}=$ one children family
$E_{2}=$ two children family and
A = picking a child then by Baye's theorem, required probability is
$P\left(E_{2} / A\right)=\frac{\frac{1}{2} \cdot x}{\frac{1}{2} \cdot \frac{x}{2}+\frac{1}{2} \cdot x}=\frac{2}{3}=0.667$
(Here ' x ' is number of families)
13. Ans. C.
$\mathrm{Z}=-2 \mathrm{j}$ is a singularity lies inside $C:|Z|=3$
\therefore By Cauchy's integral formula,
$\rightarrow \oint_{C} \frac{z^{2}-z+4 j}{z+2 j} d z=2 \pi j .\left[7^{2}-Z+4 j\right]_{z=-2 j}$
$=2 \pi j[-4+2 j+4 j]=4 \pi[3+j 2$
14. Ans. A.
$A^{2}=I \Rightarrow A=A^{-1} \Rightarrow$, ' is on eig. value of A then $\frac{1}{\lambda}$ is also its $\epsilon \quad$ n value. Sin $~$ ve require positive eigen value. $\therefore \lambda$. is the on! possibility as no other positive n is seli vore

```
j. Ar J.
        ns.
                d sections
```


$Z_{1}=$ Output impedance of first section $Z_{2}=$ Input impedance of second section For maximum power transfer, upto $1^{\text {st }}$ section is
$Z_{L}=Z_{1}^{*}$
$Z_{L}=Z_{2} \Rightarrow Z_{1}^{*}$
17. Ans. A.

Given $i_{1}=2 \mathrm{~A}$

$$
\begin{gathered}
i_{4}=-1 A \\
i_{5}=-4 A
\end{gathered}
$$

KCL at node $A, i_{1}+i_{4}=i_{2}$

$$
\Rightarrow i_{2}=2-1=1 A
$$

1. KCL at node $B, i_{2}+i_{5}=i_{3}$

$$
\Rightarrow i_{3}=1-4=-3 A
$$

$K C L$ at node $C, i_{3}+i_{6}=i_{1}$

$$
\Rightarrow i_{6}=2-(-3)=5 A
$$

18. Ans. D.

Responsivity $(R)=\frac{I_{p}}{P_{0}}$
$0.8=\frac{I_{p}}{10 \times 10^{-6}}$
$\Rightarrow I_{8}=8 \mu \mathrm{~A}$
19. Ans. D.

Figure (1)

Assume both the diods ON.
Then circuit will be r figur
$\therefore I=\frac{10-0.7}{1 K}=$
$I_{D_{2}}=\frac{0.7-0 .}{20} \quad \mathrm{า}_{m A}$
Now, $I_{D_{1}}=I-I_{D_{2}}$
$=-10.7 m A($ Not possible
$\therefore D_{1}$ is OFF and hence $D_{2}-O N$
20. Ans. A.
21. Ans. B.

Ideal current Buffer has $Z_{i}=0$

$$
Z_{0}=\infty
$$

22. Ans. B.

Output sample is voltage and is added at the input or current
\therefore It is voltage - shunt negative feedback i.e, voltagecurrent negative feedback
23. Ans. C.
$\mathrm{f}=5 \mathrm{KHz}$
Cut off frequency $(L P F)=\frac{1}{2 \pi R_{2} C}=5 \mathrm{KHz}$
$\Rightarrow R_{2}=\frac{1}{2 \pi \times 5 \times 10^{3} \times 10 \times 10^{-0}} \cdots \cdot \mathrm{o} \Omega$
24. Ans. C.

Assume al NMOS are in . iration

$\therefore V_{D S} \geq\left(V_{G S}-V_{T}\right)$
For m_{1}
$\left(5-V_{p}\right) \geq\left(5-V_{p}-1\right)$
$\left(5-V_{p}\right)>\left(4-V_{P}\right) \Rightarrow$ Sat
$\therefore I_{D_{1}}=k\left(V_{G S}-V_{T}\right)^{2}$
$I_{D_{1}}=K\left(4-V_{P}\right)^{2}$.
For m ${ }_{2}$,
$I_{D_{1}}=K\left(5-V_{Q}-1\right)^{2}$
$I_{D_{1}}=K\left(4-V_{Q}\right)^{2}$
$\therefore I_{D_{1}}=I_{D_{2}}$
$\left(4-V_{P}\right)^{2}=\left(4-V_{Q}\right)^{2}$
$\Rightarrow V_{P}=V_{Q} \& V_{P}=V_{Q}=8$
$\Rightarrow V_{P}=V_{Q}=4 V$

For m ${ }_{3}$,
$I_{D_{3}}=K\left(5-V_{R}-1\right)^{2}$
$\therefore I_{D_{2}}=I_{D_{3}}$
$\left(4-V_{Q}\right)^{2}=\left(4-V_{R}\right)^{2}$
$\Rightarrow V_{R}=V_{Q}=4 V$
$\therefore V_{P}=V_{Q}=V_{R}=4 V$
25. Ans. A.

Given Boolean Expression is $(X+Y)(X+\bar{Y}) \overline{(X+\bar{Y})+\bar{X}}$
As per the transposition theorem
$(A+B C)=(A+B)(A+C)$
so, $(X+Y)(X+\bar{Y})=X+Y \bar{Y}=X+0$
$(X+Y)(X+\bar{Y}) \overline{(X+\bar{Y})+\bar{X}}=X+\overline{(X \bar{Y})} \cdot X$
$=X+(\bar{X}+Y) \cdot X=X+\bar{X} X \cdot+Y \cdot X=X+0+Y \cdot X$
Applyabsorption theorem $=X(1+Y)=X .1=X$
26. Ans. C.

Given circuit is a Ripple (Asynchrnous) counter. In ${ }^{5}$ ' e counter, o/p frequency of each flip-flop is half of th, input frequency if their all the states are used otherw.
o / p frequency of the counter is $=\frac{\text { input frequencr }}{\text { modulus of the }}$ iter
So, the frequency at $Q_{3}=\frac{\text { input frequency }}{16}$
$=\frac{1 \times 10^{6}}{16} H_{z}=62.5 \mathrm{kHz}$
27. Ans. D.

Assume $\mathrm{x}[\mathrm{n}]$ to be periodic. ' v perio
$\Rightarrow x[n]=x[n+N]$
$\Rightarrow \sin \left(\pi^{2} n\right)=\sin \left(\pi^{2}+N\right)$,
Every frigonome ${ }^{+\cdots} \quad \neg$ rept ,ter 2π interval.
$\Rightarrow \sin \left(\pi^{2} n+^{-} \quad=\sin \quad \tau^{2} N\right)$
$\Rightarrow 2 \pi k=\pi^{2} N$
Since ' k ' is any integer, the' no possible value of ' k ' for which ' N ' can be an i, thus non-periodic.
28. Ans. B.
$x(t)$ is band limited to $[-500 \mathrm{~Hz}, 500 \mathrm{~Hz}] \mathrm{y}(\mathrm{t}$) is band limited to $[-1000 \mathrm{~Hz}, 1000 \mathrm{~Hz}] \mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \cdot \mathrm{y}(\mathrm{t})$ Multiplication in time domain results convolution in frequency domain.
The range of convolution in frequency domain is [$-1500 \mathrm{~Hz}, 1500 \mathrm{~Hz}$]
So maximum frequency present in $z(t)$ is 1500 Hz Nyquist rate is 3000 Hz or 3 kHz
29. Ans. C.

$y(t)=x(t) * h(t)$
$x(t)=$

$y(t)=\int_{0}^{3}-d \tau=45($ ste \quad tate output $)$

$$
\text { Give } \left.\begin{array}{rl}
& \left(s^{\prime}\right.
\end{array}\right) \frac{K}{(s+2)(s-1)}
$$

Characteristic equation: $1+\mathrm{G}(s) H(s)=0$

$$
1+\frac{K}{(s+2)(s-1)}=0
$$

The poles are $\mathrm{s}_{1.2}=-1 \pm \sqrt{\frac{9}{4}-4 K}$
If $\frac{9}{4}-K=0$,
then both poles of the closed loop system at the same location.
So, $K=\frac{9}{4} \Rightarrow 2.25$
31. Ans. D.

For larger values of K, it will encircle the critical point ($1+j 0$), which makes closed-loop system unstable.
32. Ans. D.

Spreading factor $(S F)=\frac{\text { chip rate }}{\text { symbol rate }}$
This if a single symbol is represented by a code of 8 chips Chip rate $=80 \times$ symbol rate
S.F (Spreading Factor) $=\frac{8 \times \text { symbol rate }}{\text { symbol rate }}=8$

Spread factor (or) process gain and determine to a certain extent the upper limit of the total number of uses supported simultaneously by a station.
33. Ans. A.

Capacity of channel is $1-\mathrm{H}(\mathrm{p})$
$H(p)$ is entropy function
With cross over probability of 0.5
$H(p)=\frac{1}{2} \log _{2} \frac{1}{0.5}+\frac{1}{2} \log _{2} \frac{1}{0.5}=1$
\Rightarrow Capacity $=1-1=0$
34. Ans. B.

$b_{1}=s_{11} a_{1}+s_{12} a_{2}$
$b_{2}=s_{21} a_{1}+s_{22} a_{2}$
$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left[\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right] ; \quad S_{1}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0}$
By verification Answer B satisfies.
35. Ans. C.

$F=\frac{1}{4 \pi \in} \frac{Q_{1} Q_{2}}{R^{2}}$
$F=\frac{1}{4 \pi \in} \frac{9^{2}}{(2 d)^{2}}=\bar{v}^{9^{2}} \frac{}{r^{2}}$
Since the char them is attra,
36. Ans. A.
$3 \sin x+2 \cos x=3\left(x-\frac{1}{3!}+\quad 2\left(x-\frac{x^{2}}{2!}+\ldots\right)\right.$

$$
=2+3 x-x^{2}-\frac{x^{3}}{2}+\ldots
$$

37. Ans. B.

Given

$\int_{-\infty}^{\infty} g(t) \cdot e^{j w t} d t=\omega^{-2 w^{2}}(\operatorname{let} G(j \omega))$
$\Rightarrow \int_{-\infty}^{\infty} g(t) d t=0$

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{t} g(z) \cdot d z \Rightarrow y(t)=g(t) * u(t) \\
& {[u(t) \text { in unit step function }]} \\
& \Rightarrow Y(j \omega)=G(j \omega) \cdot U(j \omega) \\
& Y(j \omega)=\int_{-\infty}^{\infty} y(t) \cdot e^{-j \omega t} d t \\
& \Rightarrow Y(j 0)=\int_{-\infty}^{\infty} y(t) \cdot e^{-j \omega t} d t \\
& =\left[\omega \cdot e^{-2 w^{2}}\left[\frac{1}{j \omega}+\pi \delta(\omega)\right]\right]=0 \\
& =\frac{1}{j}=-j
\end{aligned}
$$

38. Ans. ${ }^{\text {n. }}$

Volume $=\int_{R} \cdot(x, y) d y c=\int_{x=0} \int_{y=0}^{x}(x+y) d y d x$
$=\int^{12}\left[y^{2}\right]_{0}^{x} \cdot d x=\int_{0}^{12} \frac{3}{2} x^{2} d x=\frac{3}{2}\left[\frac{x^{3}}{3}\right]_{0}^{12}=864$

Consider, (i) Let $P=I_{2}+\alpha J_{2}$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\alpha\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & \alpha \\ \alpha & 1\end{array}\right]$

$$
\Rightarrow|P|=1-\alpha^{2}
$$

(ii) Let $P=I_{4}+\alpha J_{4}=\left[\begin{array}{cccc}1 & 0 & 0 & \alpha \\ 0 & 1 & \alpha & 0 \\ 0 & \alpha & 1 & 0 \\ \alpha & 0 & 0 & 1\end{array}\right]$
$|P|=(1)\left|\begin{array}{lll}1 & \alpha & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1\end{array}\right|-(\alpha)\left|\begin{array}{ccc}0 & 1 & \alpha \\ 0 & \alpha & 1 \\ \alpha & 0 & 0\end{array}\right|$
$=\left(1-\alpha^{2}\right)-(\alpha)\left[\alpha\left(1-\alpha^{2}\right)\right]=\left(1-\alpha^{2}\right)^{2}$
Similarly, if $P=I_{6}+\alpha J_{6}$ then we get
$|P|=\left(1-\alpha^{2}\right)^{3}$
$|P|=0 \Rightarrow \alpha=-1,1$
$\because \quad$ negative
$\therefore \alpha=1$
40. Ans. D.

Star Connection

Delta Connection

$$
\begin{aligned}
& x=29.09 \Omega, y=32 \Omega, z=32 \Omega \\
& x=\frac{(10)(10)+(10)(11)+(10)(11)}{11} \Omega \\
& y=\frac{(10)(10)+(10)(11)+(10)(11)}{10} \Omega \\
& z=\frac{(10)(10)+(10)(11)+(10)(11)}{10} \Omega
\end{aligned}
$$

i.e, lowest value among three resis
41. Ans. B.

Load 1:
$P=10$
$\cos \phi=0.8$

$$
-P-\jmath_{2} \quad .0-j 7.5 K V A
$$

$Q=P \tan \phi=$

$$
V A R J
$$

Load 2: $S=1$
$\cos \phi=0.8$
4
$\cos \phi=\frac{P}{S}$
$0.8=\frac{P}{10} \rightarrow=8 k w \quad Q=6 \mathrm{KVAR}$
$S_{1}=P+j Q=8+j 6$

Complex power delivered by the source is $S_{1}+S_{n}=18-j 1.5 K V A$
42. Ans. C.

$x_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T}(x(t))^{2} d t}$
$x(t)= \begin{cases}\frac{2}{T} t & 0 \leq t, T / T \\ 0 & T / 2 \leq t \leq 7\end{cases}$
$\left.=\sqrt{1[T / 2}\left(\frac{2}{T} \cdot\right)^{2}, d t+{ }_{T}^{T}(0)^{2} \cdot d t\right]$
$\Gamma \cdot \frac{4}{T}$
$x_{r m s}=\sqrt{\frac{4}{3 T^{3}} \cdot \frac{T^{3}}{8}} \Rightarrow \sqrt{\frac{1}{6}} \Rightarrow 0.408$
43. Ans. B.

By KVL,
$v(t)=R i(t)+L \cdot \frac{d i(t)}{d t}+\frac{1}{C} \int i(t) d t$
Differentiate with respect to time,
$0=\frac{R \cdot d i(t)}{d t^{2}}+\frac{R}{L} \cdot \frac{d i(t i)}{d t}+\frac{i(t)}{L C}=0$
$\frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \cdot \frac{d i(t)}{d t}+\frac{i(t)}{L C}=0$
$D_{1.2}=\frac{\frac{-R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}-\frac{4}{L C}}}{2}$
$D_{1.2}=\frac{-R}{L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}$
For critically damped response,
$\left(\frac{R}{2 L}\right)^{2}=\frac{1}{L C} \Rightarrow C=\frac{4 L}{R^{2}} F$
Given, $L=4 H ; R=40 \Omega$
$C=\frac{4 \times 4}{(40)^{2}} \Rightarrow 10 \mathrm{mF}$
44. Ans. D.
$V_{B E}=0.7 \mathrm{~V}, \frac{K T}{q}=25 \mathrm{mV}, I_{s}=10^{-13}$
Transcondutance, $\mathrm{g}_{m}=\frac{I_{C}}{V_{T}}$
$I_{C}=I_{S}\left[e^{V_{B E} / V_{T}}-1\right]$
$=10^{-13}\left[e^{0.7 / 25 m V}-1\right]=144.625 m A$
$\therefore g_{m}=\frac{I_{C}}{V_{T}}=\frac{144.625 \mathrm{~mA}}{25 m \mathrm{~V}}=5.785 \mathrm{~A} / \mathrm{V}$
45. Ans. A.

Electron concentration, $n \simeq$

$$
\begin{aligned}
= & \frac{\left(1.5 \times 10^{10}\right)^{2}}{1 \times 10^{16}} e^{0.3 / 26 m V} \\
= & 2.3 \times 10^{9} / \mathrm{cm}^{3}
\end{aligned}
$$

46. Ans. C.

Given $V_{T}=-0.5 \mathrm{~V} ; V_{G S}=2 \mathrm{~V} ; V_{D S}=5 \mathrm{~V}$;
$W / L=100 ; C_{\theta_{x}}=10^{-8} \mathrm{f} / \mathrm{cm}$
$\mu_{n}=800 \mathrm{~cm}^{2} / v-s$
$I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{W}{L}\left[2\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}{ }^{2}\right]$
$\left[\frac{\partial I_{D}}{\partial V_{D S}}\right]^{-1}=r_{d s}\left[\frac{\partial}{\partial V_{D S}}\left\{\frac{1}{2} \mu_{n} C_{0 x} \frac{W}{L}\left[2\left(V_{C}\right.\right.\right.\right.$
$=\left[\mu_{n} C_{0 x} \frac{W}{L}\left(V_{G S}-V_{T}\right)-\mu_{n} C^{I} \quad D S\right]^{1}$
$\left.\Rightarrow\left|r_{d s}\right|=\left\lvert\, \frac{}{} \frac{1}{\mu_{n} C_{0 x}^{W}} \quad-V_{D s}\right.\right) \mid$

$=|$| $800 \times 10^{-8} \times$, | - | |
| :--- | :--- | :--- |
| $5)$ | | |

47. Ans. C.

Given $V_{B E}=0.7 \mathrm{~V}, \beta=100, V_{Z}=4.7 \mathrm{~V}, V_{0}=9 \mathrm{~V}$
$V_{R}=9 \times \frac{R}{R+1 k}$
$4.7=9 \times \frac{R}{R+1 k}(\because \quad)$
$R=1093 \Omega$
48. Ans. C.

Given, $Z_{i}=\infty$
$A_{0_{L}}=\infty$
$V_{i_{0}}=0$
$V_{-}-\left(R / / R_{2}\right.$,
$\frac{\Lambda_{1}}{R} Y_{i_{2}} \ldots \ldots .(1)$
at in ng node
$R_{1} \quad R_{2} \stackrel{\lrcorner}{=}=0 \quad\left(\therefore Z_{i}=\infty\right)$
$R_{2}=V_{2}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$
$\frac{V_{0}}{R_{2}}=\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right) I_{1}\left[\frac{R_{2}+R_{1}}{R_{1} R_{2}}\right]$
$\Rightarrow V_{0}=I_{1} R_{2}$
49. Ans. D.
$V_{B E}=0.7 \mathrm{~V}, \beta=200, V_{T}=25 \mathrm{mV}$
DC Analysis:
$V_{B}=12 \times \frac{11 k}{11 k+33 k}=3 \mathrm{~V}$
$V_{E}=3-0.7=2.3 \mathrm{~V}$
$I_{E}=\frac{2.3}{10+1 k}=2.277 \mathrm{~mA}$
$I_{B}=11.34 \mu \mathrm{~A}$
$I_{C}=2.26 \mathrm{~mA}$
$r_{e}=\frac{25 \mathrm{mV}}{2.277 \mathrm{~mA}}=10.98 \Omega$
$A_{V}=\frac{V_{0}}{V_{i}}=\frac{-\beta R_{C}}{\beta r_{e}+(1+\beta)\left(R_{s}\right)}$
$=\frac{-200 \times 5 k}{200 \times 10.98+(201) 10}$
$A_{V}=-237.76$
50. Ans. A.

Assume dummy variable K as a output of XOR gate
$K=X \oplus Y=\bar{X} Y+X \bar{Y}$
$F=K .(K \odot$
$=(\bar{K} \bar{Z}+K . Z)$
$=K \cdot \bar{K} \bar{Z}+K \cdot K \cdot Z$
$=0+K . Z(\because \quad$) and $K . K=K)$
Put the value of K in above expression
$F=(\bar{X} Y+X \bar{Y}) Z$
$=\bar{X} Y Z+X \bar{Y} Z$
51. Ans. D.

Given Boolean Function is
$F(w, x, y, z)=w y+x y+\bar{w} x y z+\bar{w} \bar{x} y+x z+\overline{x y} \bar{z}$.
By using K-map

The alternate expression for EX-NOR gate is
$=\overline{A \oplus B}=\bar{A} \oplus B=A \oplus \bar{B}$
So, if the Ex-OR gate is substituted by Ex-NOR gate then input A should be connected to \bar{Q}_{1}
$D_{2}=\bar{Q}_{1} \bar{S}+Q_{1} S=\overline{\bar{Q}}_{1} \bar{S}+\bar{Q}_{1} \cdot S(\because$
$=Q_{i} \bar{S}+\bar{Q}_{1} \cdot S$
53. Ans. C.

Given $x[n]=\left(\frac{1}{-9}\right)^{n} u(n)-\left(-\frac{1}{3}\right)^{n} u[-n-1]$
for $\left(\frac{-1}{9}\right)^{h} u[n] R_{o c}$ in $|z|>\frac{1}{9}$
(Right sided sequence, $R_{o c}$ in exterior of circle of radius 1/9)
Thus overall $R_{o c} \operatorname{in} \frac{1}{9}<|z|<\frac{1}{?}$
54. Ans. B.

Given $x[n]=\sin \binom{\tau n}{-} ; N=1$
\Rightarrow Fourier series co-ei. onts are \quad, periodic with period $\mathrm{N}=10$

$$
\begin{gathered}
x[n]=\frac{1}{2 i} e^{\frac{-1}{i} e^{-\frac{2 \pi}{10} n} \quad-1=a_{-1}+20} \\
=\frac{-1}{7} \Rightarrow a_{-1}=a_{-1+10}=a_{9}=\frac{-1}{2 j} \\
\iota_{1}+1 \text { r } \quad \text { or } \begin{array}{l}
a_{1}=a_{1}+20 \\
a_{-1}=a_{-1}+20
\end{array}
\end{gathered}
$$

$\Rightarrow k=10 m+1$ or $k=10 . m-1 \Rightarrow B=10$
J. Ans. A.

Given $y(t)+5 y(t)=u(t)$ and $y(0)=1 ; u(t)$ is a unit step function.
Apply Laplace transform to the given differential equation.
$S y(s)-y(0)+5 y(s)=\frac{1}{s}$
$y(s)[s+5]=\frac{1}{s}+y(0)\left[L\left[\frac{d y}{d t}\right]=s y(s)-y(0)\right]$
$[L[u(t)=1 / s]]$
$y(s)=\frac{\frac{1}{s}+1}{(s+5)}$
$y(s)=\frac{\frac{1}{s}+1}{(s+5)} \Rightarrow \frac{A}{s}+\frac{B}{s+5}$
$A=1 / 5 ; B=4 / 5$
$y(s)=\frac{1}{5 s}+\frac{4}{5(s+5)}$
Apply inverse Laplace transform,
$y(t)=\frac{1}{5}+\frac{4}{5} e^{-5 t}$
$y(t)=0.2+0.8 e^{-5 t}$
56. Ans. B.

From the given state model,
$A=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2\end{array}\right] B=\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right] \quad C=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
Controllable: $\mathrm{Q}_{c}=c=\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]$
if $\left|Q_{c}\right| \neq 0 \rightarrow$ controllable
$Q_{c}=\left[\begin{array}{ccc}0 & 4 & -8 \\ 4 & -4 & 4 \\ 0 & 0 & 0\end{array}\right] \Rightarrow\left|Q_{c}\right|=0$
\therefore uncortrollable
Observable: $\mathrm{Q}_{0}=\left[\begin{array}{c}C \\ C A \\ C A^{2}\end{array}\right]$
If $\left|Q_{0}\right| \neq 0 \rightarrow$ observable
$\mathrm{Q}_{0}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 2 & 4\end{array}\right] \Rightarrow\left|Q_{0}\right|=1$
\therefore Observable
The system is uncontrollable and observable
57. Ans. D.
$G(s)=\frac{10}{(s+0.1)(s+1)(s+10)}$
$G(s)=\frac{10}{0.1\left[1+\frac{s}{0.1}\right][1+s]\left[1+\frac{s}{10}\right] \cdot 1}$
$G(s)=\frac{10}{[1+10 s][1+s][1+}$
By Approximation. $\quad)=\frac{}{[10 s}$
Phase Margin $=\quad 180+$
$\omega_{g c}=1=\frac{}{\sqrt{100} \omega}$
$=180-\tan ^{-1}\left(\frac{10 \times 0.9 y}{1}\right)$
$=100 \omega^{2}=\frac{99}{1 \omega}$
Phase Margin $=95^{\circ} .73$
$\Rightarrow \omega^{2} \frac{\sqrt{99}}{1 \omega} \Rightarrow \omega_{g c}=0.9949 r / s c$
Asymptotic approximation, Phase margin $=\phi-45^{\circ}=48$
58. Ans. C.

By observing the options, if we place other options, characteristic equation will have $3^{\text {rd }}$ order one, where we cannot describe the settling time.
If $C(s)=2(s+4)$ is considered
The characteristic equation, is
$s^{2}+3 s+2+2 s+8=0$
$\Rightarrow s^{2}+5 s+10=0$
Standard character equation $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$

$$
\omega_{n}^{2}=\sqrt{10} ; \xi \omega_{n}=2.5
$$

Given, 2% settling time, $\frac{4}{\xi_{l}}<2 \Rightarrow \xi a_{,}>2$
59. Ans. B.
$V(x)=E\left(x^{2}\right)-\{(x)\}^{2} \geq 0$. variance cannot be negative
$\left.\therefore E\left(x^{2}\right)=(x)\right\}^{2}$
J. Ar
(θ)

Given $X(t)=\sqrt{2} \sin (2 \pi t+\phi)$
ϕ in uniformly distributed in the interval $[0,2 \pi]$

$$
\begin{aligned}
& E\left[x\left(t_{1}\right) x\left(t_{2}\right)\right] \\
& =\int_{0}^{2 \pi} \sqrt{2} \sin \left(2 \pi t_{1}+\theta\right) \sqrt{2} \sin \left(2 \pi t_{2}+\theta\right) f_{\phi}(\theta) d \theta \\
& =2 \int_{0}^{2 \pi} \sin \left(2 \pi t_{1}+\theta\right) \sin \left(2 \pi t_{2}+\theta\right) \cdot \frac{1}{2 \pi} \cdot d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin \left(2 \pi\left(t_{1}+t_{2}\right)+2 \theta\right) d \theta \\
& \quad+\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \left(2 \pi\left(t_{1}-t_{2}\right) d \theta\right.
\end{aligned}
$$

First integral will result into zero as we are integrating from 0 to 2π.

Second integral result into $\cos \left\{2 \pi\left(t_{1}-t_{2}\right)\right\}$
$\Rightarrow E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=\cos \left(2 \pi\left(t_{1}-t_{2}\right)\right.$
61. Ans. C.

Bit error rate for BPSK
$=Q\left(\sqrt{\frac{2 E}{N O}}\right) \cdot\left\{\left[\sqrt{\frac{E}{N_{0} / 2}}\right]\right\}$
$\Rightarrow Y=\frac{2 E}{N_{0}}$

Function of bit energy and noise $P_{S D} \frac{N_{0}}{2}$
Counterllation diagram of BPSK
Channel is $A_{W G N}$ which implies noise sample as independent

Let $2 x+n_{1}+n_{2}=x^{1}+n^{1}$
where $^{1}=2 x$
$n^{1}=n_{1}+n_{2}$
Now Bit error rate $=Q\left(\sqrt{r^{\prime}}\right.$
E^{1} is energy in x^{1}
$N_{o}{ }^{1}$ is PSD of
$E^{1}=4 \mathrm{E}$ [as a1 udes art doubled]
$N_{O}^{1}=\mathrm{N}_{0}$ [inde. de 1 channel]
\Rightarrow Bit error rate $=Q\left(\sqrt{\frac{4 \bar{E}}{\bar{I}}} \quad-\left(\sqrt{2} \sqrt{\frac{2 E}{N_{0}}}\right)\right.$
$\Rightarrow b=\sqrt{2}$ or 1.414
62. Ans. B.

In this problem random variable is L

Lcan be 1, 2,..............
$P\{L=1\}=\frac{1}{2}$
$P\{L=3\}=\frac{1}{8}$
$H\{L\}=\frac{1}{2} \log _{2} \frac{1}{1 / 2}+\frac{1}{4} \log _{2} \frac{1}{1 / 4}+\frac{1}{8} \log _{2} \frac{1}{1 / 8}+\ldots \ldots .$.
$=0+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots \ldots .$.
[Arithmatic gemometric ser', sumıı. ion]
$=\frac{2}{1-1 / 2}+\frac{1 / 2 \cdot 1}{\left(1-\frac{1}{2}\right)^{2}}=2$
63. Ans. B.
$E_{\theta}=\frac{10 C}{r} \mathrm{~s} .9 e^{-J \beta r}$
${ }^{5} \sin \theta t$
$-\frac{1}{9} \int \quad I_{Q}^{*} \cdot d s$
$=\frac{-}{2} \int_{s} \frac{(0.265)}{r^{2}} \sin ^{2} \theta r^{2} \sin \theta d \theta d \phi$
$\gamma_{a v t}=\frac{1}{2} \int_{s}(26.5) \sin ^{2} d \theta d \phi$
$=13.25 \int_{\theta-0}^{\pi / 2} \sin ^{3} \theta d \theta \int_{Q=0}^{2 \pi} d \phi=13.25(2 / 3)(2 \pi)$
$P=55.5 w$
64. Ans. B.
$Z_{0}=\frac{276}{\sqrt{\epsilon_{r}}} \log \left(\frac{d}{r}\right)$
d \rightarrow distance between the two plates
so, z_{0} - changes, if the spacing between the plates changes.
$V=\frac{1}{\sqrt{L C}} \rightarrow$ independent of spacing between the plates
65. Ans. B.

Given, $l=\lambda / s$
$Z_{0}=50 \Omega$
$Z_{\text {in }}(l=\lambda / 8)=Z_{0}\left[\frac{Z_{L}+J Z_{0}}{Z_{0}+K Z_{L}}\right]$
$Z_{\text {in }}=50\left[\frac{Z_{L}+J 50}{50+J Z_{L}}\right]=50\left[\frac{Z_{L}+J 50}{50+J Z_{L}} \times \frac{50-J Z_{L}}{50-J Z_{L}}\right]$
$Z_{i n}=50\left[\frac{50 Z_{L}+50 Z_{L}+J\left(50^{2}-Z_{L}^{2}\right)}{50^{2}+Z_{L}^{2}}\right]$

Given, $Z_{\text {in }} \rightarrow$ Real
$\mathrm{So}, \mathrm{I}_{\text {mg }}\left(Z_{\text {in }}\right)=0$
$50^{2}-Z_{L}^{2}=0$
$Z_{L}^{2}=50^{2}$
$R^{2}+X^{2}=50^{2}$
$R^{2}=50^{2}-X^{2}=50^{2}-30^{2}$
$R=40 \Omega$

