Solutions

1. Ans. B.

At $Z=0$, stress should not be equal to zero because of available surcharge
And upto $Z=h$ variation in stress should be linear.
2. Ans. A.

VPI is horizontally midway between VPC and VPT
VPC $=\mathrm{VPI}-\mathrm{L} / 2$
$\Rightarrow 0=100-\mathrm{L} / 2$
$\Rightarrow L=200 \mathrm{~m}$
3. Ans. D.
$z=\frac{T_{s}-T_{E}}{\sigma}$
$T_{s}=T_{E}+2 \sigma=200+1.64 \times 6.1 \quad z=\frac{T_{s}-T_{E}}{\sigma}$
$=200+10.004=210.004$ days
For 95% confidence level $z=1.64$
$T_{E}=200$ days
$\sigma=6.1$ days
$T_{s}=T_{E}+2 \sigma=200+1.64 \times 6.1$
$=200+10.004=210.004$ days
4. Ans. D.

Lump sum contract should be preferred when construction work is well-defined with all its drawings, specifications, quantities and estimates

5. Ans. D.

Given
$V=x^{2} i+2 y^{3} j+z^{4} k$
$\operatorname{div} v=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y^{2}\right)+\frac{\partial}{\partial z}\left(z^{2}\right)$
$=2 x+6 y^{2}+4 z^{3}$
$\left.\operatorname{div} v\right|_{(1,2,3)}=2+24+108=134$
6. Ans. B.

Total degree of freedom $=3 \mathrm{j}-\mathrm{R}$
$\mathrm{J}=$ no. of joints $=6$
$R=$ no. of reactions $=2+2=4$
DOF $=3 \times 6-4=18-4=14$
When axial deformation are neglected total axial
deformations $=8$
Reduction in $D_{k}=14-8=6$
7. Ans. A.

As per Indian standard, day time noise level at residential area limited to 55 dB
8. Ans. A.

From zero air void line
$\gamma_{d}=\frac{G \cdot \gamma_{w}}{1+w G}$
9. Ans. C.

The safety of round about can be achieved by decreasing entry radius (decreases speed at entry) and increasing exit radius (increasing exit speed)
10. Ans. D.

Shear strain in an element is positive when the angle between two faces is reduced and negative when angle is increased.

Here since angle has increased, so shear strain should be negative.
$\gamma_{x y}=-0.0056 \mathrm{rad}=0.001 \mathrm{k}$
So, $-0.005=0.001 \mathrm{~K}$
$\Rightarrow \mathrm{K}=-0.50$
11. Ans. D.

Resection is the method of orientation used when the table occupies a position not yet located in the map.
12. Ans. C.

The specific speed of pump
$\left(N_{s}\right)=\frac{N \sqrt{Q}}{H^{3 / 4}}=\frac{N \cdot Q^{0.5}}{H^{0.75}}$
13. Ans. C.
$\frac{\Delta T}{\Delta Z}=\frac{15-15.5}{60-10}=\frac{0.5}{50}=\frac{1.00^{\circ} \mathrm{C}}{100 \mathrm{~m}}$
$\frac{\Delta T}{\Delta Z}=\frac{14.3-15.0}{130-60}=\frac{0.7}{70}=\frac{1.00^{\circ} \mathrm{C}}{100 \mathrm{~m}}$
So, Neutral
14. Ans. B.
$\phi-$ index $=\frac{P-R}{t}$
$1.5=\frac{3.5-R}{1} \Rightarrow R=3.5-1.5=2 \mathrm{~cm} / \mathrm{hr}$
15. Ans. B.

Equilibrium cant $=\frac{G \cdot V^{2}}{127 R}$
For Broad guage (G)=1.676
$e=\frac{1.676 V^{2}}{127 R}$
$=0.01319 \frac{V^{2}}{R} m$
$e=1.319 \frac{V^{2}}{R} \mathrm{~cm}$
16. Ans. A.
given systems
$3 x_{1}+2 x_{2}=c_{1}$
$4 x_{1}+x_{2}=c_{2}$
Matrix From is $\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$
$A X=B$
Characteristic equations of above systems is
$|A-\lambda I|=0$
$\left|\begin{array}{cc}3-\lambda & 2 \\ 4 & 1-\lambda\end{array}\right|=0$
By expanding $\lambda^{2}-4 \lambda-5=0$
17. Ans. D.
$N_{f}=$ No. of flow channels $=$ No. of flow lines $-1=5-1=4$
$N_{d}=$ No. of equipotential drops= no. of equipotential
lines-1 = 11-1 $=10$
$q=k . h \frac{N_{f}}{N_{d}}$
$=10^{-6} \times 4 \times \frac{4}{10}$
$=1.6 \times 10^{-6} \mathrm{~m} 3 / \mathrm{s}$
$q=1.6 \mathrm{~cm}^{3} /$ sec. per. m. width
18. Ans. D.

The grade compensation
$\frac{30+R}{R}=\frac{30+50}{50}=1.6 \%$
Maximum grade compensation
$=\frac{75}{R}=\frac{75}{50}=1.5 \%$
Grade compensation $=1.5$
19. Ans. C.
$0 \leq \mathrm{B} \leq 1$
A can be negative for heavily OC clays and dense sands A can be positive and greater than 1 for sensitive clays, NC clays, lightly OC clays.
20. Ans. C.

For the given condition,
Target mean strength $=$ characteristic strength $=25 \mathrm{MPa}$
21. Ans. B.

In plate load test,
The ultimate bearing capacity does not depends upon width of footing
$q_{u f}=q_{u P}=180 \mathrm{kPa}$
22. Ans. C.

Horton's infiltration capacity
$f=f_{e}+\left(f_{o}-f_{e}\right) e^{-\infty t}$
$f_{e}=$ ultimate infiltration capacity $=25 \mathrm{~mm} / \mathrm{hr}$
$f=$ Initial infiltration capacity $=200 \mathrm{~mm} / \mathrm{hr}$
$\mathrm{f}=$ Infiltration capacity $=90 \mathrm{~mm} / \mathrm{hr}$
$f=f_{e}+\left(f_{o}-f_{e}\right) e^{-\infty t}$
$90=25+(200-25) e^{-\infty \times 1}$
$175 e^{-\infty}=65$
$e^{-\infty}=0.371$
$\propto=0.9915 ; ~ \propto=0.99 /$ hour
23. Ans. B.

Given first three are already heads. If the coin is tossed again, the outcome does not depend on previous outcomes.
Probability getting head $=\frac{1}{2}=0.5$
(Or)
Probability of first three is heads
$=P(H \times H \times H \times H)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$
Probability of fourth time head is
$=P(H \times H \times H \times H)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$
Given condition is that (H.H.H) is already realized
The required probability $=\frac{1 / 16}{2 / 8}=0.5$
24. Ans. B.

ASP host heterotrophic aerobic organisms.
25. Ans. C.
$w=f(x, y)$ where x and y are functions of t .
By Chain Rule
$\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}$
26. Ans. D.

Moment at
$\theta, M_{\theta}=2000 \times 2-1650 \times \frac{(2)^{2}}{2}=700 \mathrm{KN}-\mathrm{m}$ anticlockwise

$K \theta R=\frac{u E I}{4}=E I$,
$K \theta S=\frac{u E I}{4}=E I$
$\because M \theta \quad K \theta . \theta_{\theta}$
$\therefore \theta_{\theta}=\frac{M \theta}{K \theta}=\frac{700 \times 10^{6} \times 1000}{2 \times 2.5 \times 10^{47} \times 10^{8}}$
$=0.0175 \mathrm{rad}$
$=1.003^{\circ} \simeq{ }^{o}$
27. Ans. D.

Radius of relative stiffness
($\left.\ell_{\llcorner \pm \ldots}^{\ulcorner } \frac{E h^{3}}{\left(1-\mu^{2}\right)}\right]^{1 / 4}$
ℓ
ℓ
ℓ
$\left\lfloor\frac{\left.\frac{E h^{3}}{\vdots K\left(1-\mu^{2}\right)}\right]^{1 / 4}}{E(0.5 h)^{3}}\right]^{1 / 4}=\left[\frac{2}{(0.5)^{3}}\right]^{1 / 4}$
$=\left(2^{4}\right)^{1 / 4}=2$
28. Ans. C.

Given sub critical depth $=2 x$ super critical depth $y=$ super critical depth
Sub critical depth $=2$ y
$y_{1}+\frac{Q_{1}^{2}}{2 g A_{1}^{2}}=y_{2}+\frac{Q_{1}^{2}}{2 g A_{2}^{2}}$
$2 y+\frac{Q^{2}}{2 g B^{2}(2 y)^{2}}=y+\frac{Q^{2}}{2 g \cdot B^{2} y^{2}}$
$y=\frac{Q^{2}}{2 g \cdot B^{2}}\left[\frac{-1}{(2 y)^{2}}+\frac{1}{y^{2}}\right]$
$y=\frac{2^{2}}{2 \times 9.81 \times 1}\left[-\frac{1}{4}+1\right] \frac{1}{y^{2}} \Rightarrow y^{3}=0.153$
$\Rightarrow 0.534$
Super critical depth $(y)=0.5347$
Sub critical depth $=2 y=2 \times 0.5347=1.0694 m$
29. Ans. A.
$\frac{T_{1}}{J}=\frac{\tau}{r}$
$T=\frac{\tau}{r} J$
$=\frac{125}{\left(\frac{100}{2}\right)}\left[\frac{\pi}{32}\left(D_{o}^{4}-D_{i}^{4}\right)\right]$
$=\frac{125 \times 2}{100}\left[\frac{\pi}{32}\left(100^{4}-50^{4}\right)\right]$
$=23009711.82 N-m$
$=23.009 \mathrm{kN}-\mathrm{m}$
30. Ans. D.

Walls of one brick thick are measured in Square meters not in cubic meters
31. Ans. A.

$\sigma_{1}=\sigma_{3} \Rightarrow P=\frac{2 \sigma_{1}}{2}=2, q=0$
\therefore lies on P.axis
If $\sigma_{1}>\sigma_{3} \Rightarrow P=\frac{\sigma_{1}+\sigma_{3}}{2}>0, q=\frac{\sigma_{1}-\sigma_{3}}{2}>0$
p \& q are positive
32. Ans. C.

Maximum moment $=P e$
$\frac{w \ell}{8}$
$e=\frac{w \ell}{8 P} \quad \frac{8^{2}}{8 \times 1600}=0.15 m$
33. Ans. D.
$0.0673 d_{1}^{2}=5 \Rightarrow d_{1}=8.62 \mathrm{Km}$
$0.0673 d_{2}{ }^{2}=40=d_{2}=24.38 \mathrm{Km}$
Therefore distance of observer from light house
$d=d_{1}+d_{2}$
$=8.62+24.38$
$=33 \mathrm{~km}$
34. Ans. A.
$A=\left(\begin{array}{ll}1 & 5 \\ 6 & 2\end{array}\right) B=\left(\begin{array}{ll}3 & 7 \\ 8 & 4\end{array}\right)$
$A B^{T}=\left(\begin{array}{ll}1 & 5 \\ 6 & 2\end{array}\right)\left(\begin{array}{ll}3 & 8 \\ 7 & 4\end{array}\right)$
$=\left[\begin{array}{ll}38 & 28 \\ 32 & 56\end{array}\right]$
35. Ans. C.

Strain up to linear elastic behavior is
$\in=\frac{\delta}{\ell} \quad 2.5=\frac{1}{800}$
Strain energy $=\frac{1}{2} \times f_{y} \times \in \times V$
$=\frac{1}{2} \times 250 \times \frac{1}{800} \times\left(2000 \times \frac{\pi}{4} \times 8^{2}\right)$
$=5000 \pi$
$=15707.963 \mathrm{Nmm}$
36. Ans. A.
$P: d=60 t, Q: d=60 t^{2}$
Distance at any time t between P and Q is given by $d(t)$ $=60 \mathrm{t}-60 \mathrm{t}^{2}$
For space headway to be maximum
$\frac{d^{2}}{d t^{2}}(d(t))=0$
$\Rightarrow 60 t-120 t=0$
$\Rightarrow t=1 / 2 h o u r$

$$
\begin{aligned}
& \text { so, } d(1 / 2)=60 \times 1 / 2-60 \times\left(\frac{1}{2}\right)^{2} \\
& =30-15=15 \mathrm{~km}
\end{aligned}
$$

So, space headway would be max at $t=30$ minutes
37. Ans. A.
given
$I=\int_{0}^{1} \frac{\left(\sin ^{-1} x\right)^{2}}{\sqrt{1+x^{2}}} d x$
$=\left.\frac{\left(\sin ^{-1} x\right)^{3}}{3}\right|_{0} ^{1}\left(\begin{array}{ll}\because & f^{1}(x) d x \\ & =\frac{f^{n+1}}{n+1}\end{array}\right)$
$=\frac{1}{3}\left[\left(\sin ^{-1}\right)^{3}-\sin ^{-1} 0\right]=\frac{1}{3}\left[\left(\frac{\pi}{2}\right)^{3}-0\right]=\frac{\pi^{3}}{24}$
38. Ans. C.

Detention time of a circular tank is given by
$t^{d}=\frac{d^{2}(0.011 d+0.785 H)}{Q}$
So, $\frac{d^{2}(0.011 d+0.785 H)}{Q}=\frac{3}{20}$
$\Rightarrow \frac{d^{2}(0.011 d+0.785 \times 3)}{1000}=\frac{3}{20}$
$\Rightarrow 0.011 d^{3}+2.355 d^{2}-150=0$
$\Rightarrow d=7.83 m=8 m$ (Rounded to nearest integer)
39. Ans. A.

Case-I: Undrained condition
$F . O . S=\frac{\text { Resisting shear stress }}{\text { Actual shear stress }}$
$=\frac{80}{50}=1.6$
Case-I: Drained condition
$F . O . S=\frac{\bar{\sigma} \tan \phi+{ }^{\prime} c^{\prime}}{50}$
$=\frac{\left[2 \times 18+4(20-9.81] \times \tan 18^{\circ}+20\right.}{50}$
$=0.9$
40. Ans. A.

By thiesen polygon method
$P_{a v g}=\frac{\sum P_{i} A_{i}}{\sum A_{i}}$

$A_{5}=\left(\frac{25}{\sqrt{2}}\right)^{2}=312.5 \mathrm{~km}^{2}$
$A_{1}=A_{2}=A_{3}=A_{4}=\frac{625-312.5}{4}=78.125 \mathrm{~km}^{2}$
$P_{\text {avg }}=\frac{G_{1} A_{1}+G_{2} A_{2}+G_{3} A_{3}+G_{4} A_{4}+G_{5} A_{5}}{A}$
$=\frac{300 \times 78.125+285 \times 78.125+272 \times 78.125+288 \times 312.5}{625}$
$=287.375 \mathrm{~mm}$
41. Ans. A.
$y=x \operatorname{In} x$
$\frac{d y}{d x}=x \cdot \frac{1}{x}+\operatorname{In} x$
Giventhat $\theta=45^{\circ} \Rightarrow \operatorname{Tan} \theta=1$
$\frac{d y}{d x}=\operatorname{Tan} \theta=1$
$i . e \Rightarrow x \cdot \frac{1}{x}+\operatorname{In} x=1+\operatorname{In} x=1$
$x=1, y=0$ satisfies
$\therefore A$ is correct
42. Ans. A.
head loss
$\left(h_{f}\right)=\frac{f L Q^{2}}{12 d^{5}}$
$f=\frac{64}{\mathrm{R}_{\mathrm{e}}}=\frac{64}{800}=0.08$
$h_{f}=\frac{800 \times(0.01)^{2}}{12 \times(0.1)^{5}} \times 1000$
$=66.67$ per km
43. Ans. A.

P - Le chattier test - soundness of OPC
Q - Vee-Bee test - consistency or workability of concrete
R - Blaine air permeability test - Fineness of OPC
S - The vicat apparatus - consistency and setting time of OPC
44. Ans. C.

$50 \mathrm{~cm}^{3} 0.5 \times 0.5 \times \ell$
ℓ
$P_{1}+(1000 \times 9.81 \times 0.2)-(13000 \times 9.81 \times 2 x)$
$=P_{2} P_{1}=P_{2}$
$1000 \times 9.81 \times 0.2=13600 \times 9.81 \times 2 x$
$x=\frac{100}{13600}=7.35 \times 10^{-3} \mathrm{~m}=0.735 \mathrm{~cm}$
New height $=20+x=20+0.735$
$=20.735 \mathrm{~cm}$
45. Ans. D.

Total hardness as
$\mathrm{CaCo}_{3}=\left[\mathrm{Ca}^{+2} \times \frac{50}{20}\right]+\left[\mathrm{Mg}^{2+} \times \frac{50}{12.2}\right]$
$=\left[60 \times \frac{50}{20}\right]+\left[36.6 \times \frac{50}{12.2}\right]$
$=150+150=300 \mathrm{mg} /{\mathrm{Las} \mathrm{CaCo}_{3} .}$.
46. Ans. C.

P

$\mathrm{S}_{\mathrm{p}}=80 \mathrm{~N}$
$M_{P}=80 \times 8=640 \mathrm{Nm}$

$\mathrm{S}_{\mathrm{Q}}=20 \times 8=160 \mathrm{~N}$
$M_{P}=20 \times 8 \times 8 / 2=640 \mathrm{Nm}$
R

$S_{R}=0$
$M_{R}=640 \mathrm{Nm}$
$S_{P}<S_{Q}>S_{R} M_{P}=M_{Q}=M_{R}$
47. Ans. A.

$r=\frac{4}{\sqrt{2}}=2 \sqrt{2}=2.82$
$\sigma_{x}=4 \times \frac{3 Q}{2 \pi z^{2}}\left[\frac{1}{1+\left(\frac{r}{z}\right)^{2}}\right]^{5 / 2}$
$=4 \times \frac{3 \times 5000}{2 \pi \times 5^{2}}\left[\frac{1}{1+\left(\frac{2.82}{5}\right)^{2}}\right]^{5 / 2}$
$=191.36 \mathrm{kPa}$
48. Ans. B.
$y=L_{o}\left[1-e^{-K_{p} x t}\right]$
$\frac{y}{L_{o}}=0.68$
$\frac{y}{L_{o}}=1-e^{-K_{p} x t}$
$0.68=1-e^{-K_{p} x 5}$
$e^{-K_{p} x 5}=1-0.68=0.32$
$K_{D}=0.2276 \approx 0.23 / d a y$
49. Ans. A.

The point bearing resistance of piles in sandy soils
$\mathrm{Q}_{\mathrm{P}}=\mathrm{A}_{\mathrm{b}} \cdot \sigma_{\mathrm{v}}^{\prime} \cdot \mathrm{N}_{\mathrm{q}}$
As the area at base $\left(\mathrm{A}_{\mathrm{b}}\right)$ and N_{q} are same for both the piles given, $Q_{p} \propto \sigma_{v}^{\prime}$
For dry sand condition, $\sigma_{v}^{\prime}=\sigma_{v}=20 \times \gamma$
For submerged condition,
$\sigma_{v}^{\prime}=20 \times \gamma^{\prime}$
Since, $. . \gamma^{\prime}=\frac{\gamma}{2}$
$\therefore \mathrm{QP}_{2} \approx 0.5 \mathrm{QP}_{1}$
(or) $\mathrm{QP}_{1}>\mathrm{QP}_{2}$ by about 100%
50. Ans. B.

For rice,
Duty $=\frac{8.64 B}{\Delta}=\frac{8.6 \times 150}{1.30}=996.923$
$Q=\frac{A}{D}=\frac{2500}{996.923}=2.5077$
For wheat
$Q=\frac{A}{D}=Q . D=2.5077 \times \frac{8.64 \times 120}{0.5}=5200 h a$
51. Ans. B.

Dry weight $=$ Total weight - M.C

Component	$\%$ mass	M.C	Dry wt $(\%)$	Energy content	Total Energy
Food Waste	20	70	6	2500	50,000
Paper	10	4	9.6	10000	$1,00,000$
Cardboard	10	4	9.6	8000	80,000
Plastics	10	1	9.9	14000	140000
Garden Trimmings	40	60	16	3500	140000
Wood	5	20	4	14000	70000
Tin Cans	5	2	4.9	100	500
			60		580500 Ki

Unit energy $=\frac{580500}{100}=5805 \mathrm{~kJ} / \mathrm{kg}$
Moisture content $=100-60=40 \%$
Energy on dry basis

$$
=\frac{100 \times 5805}{100-40}=9675 \mathrm{~kJ} / \mathrm{kg}
$$

So, different of energy
$=9675-5805=3870 \mathrm{~kJ} / \mathrm{kg}$
52. Ans. A.
given $y^{\prime \prime}-4 y^{\prime}+3 y=2 t-3 t^{2}$
$\Rightarrow\left(D^{2}-4 D+3\right) y=\left(2 t-3 t^{2}\right)$
By the definition of particular solution
$y_{p}=\frac{1}{D^{2}-4 D+3}\left(2 t-3 t^{2}\right)$
$\Rightarrow\left(D^{2}-4 D+3\right) y_{p}=2 t-3 t^{2}$
verifying options, option (a) satisfies,
$\left(D^{2}-4 D+3\right)\left(-2-2 t-t^{2}\right)$
$=-2+8+8 t-6-6 t-3 t 2=2 t-3 t^{2}$
$\therefore(A)$ is constant
Alternate solution:
Given
$y^{\prime \prime}-4 y^{\prime}+3 y=2 t-3 t^{2}$
$\left(D^{2}-4 D+3\right) y=2 t-3 t^{2}$
Particular Solution $=$
$y_{p}=\frac{1}{D^{2}-4 D+3}\left(2 t-3 t^{2}\right)$
$=\left[\frac{\frac{-1}{2}}{D-1}+\frac{\frac{1}{2}}{D-3}\right]\left(2 t-3 t^{2}\right)$
$=\frac{1}{2}\left[\frac{1}{1-D}+\frac{1}{3-D}\right] 2\left(t-\frac{3}{2} t^{2}\right)$
$=\left[(1-D)^{-1}-\frac{1}{3}\left(1-\frac{D}{3}\right)^{-1}\right]\left(t-\frac{3}{2} t^{2}\right)$
$=\left(1+D+D^{2}+D^{3}+..\right)\left(t-\frac{3}{2} t^{2}\right) \frac{-1}{3}$
$\left(1+\frac{D}{3}+\frac{D^{2}}{9}+..\right)\left(t-\frac{3}{2} t^{2}\right)$
$\left[t-\frac{3}{2} t^{2}+1-3 t-3\right] \frac{-1}{3}\left[t-\frac{3}{2} t^{2}+\frac{1-3 t}{3}+\frac{1}{9}(-3)\right]$
$=-2-2 t-\frac{3}{2} t^{2}-\frac{t}{2}+\frac{1}{2} t^{2}-\frac{1}{9}+\frac{t}{3}+\frac{1}{9}=-2-2 t-t^{2}$
53. Ans. A.

Maximum load taken by plate $=150 \times 50 \times 8=60 \mathrm{KN}$ $=k . s l e f t . \tau$
Maximum load taken by weld $=0.7 \times 6 \times(100+100+$ 50) $\times 110=115.5 \mathrm{KN}$

So, permissible load $=\min$. Of $\{60 \mathrm{KN}, 115.51 \mathrm{CN}\}=$ 60KN
54. Ans. A.

$\delta_{1}=\frac{5}{384} \frac{w L^{4}}{E I}=\frac{5}{384} \times \frac{6 \times 4^{4}}{1000}=\frac{1}{50}=0.02 \mathrm{~m}$
$\delta_{2}=\frac{w L^{4}}{48 E I}=\frac{130 \times 2^{3}}{48 \times 1000}=\frac{13}{600}=0.02 \mathrm{~m}$
$\delta_{2}=\delta_{1}$
55. Ans. A.

For Tower B,
Radial distance of top of tower, $r=6 \mathrm{~cm}$ Length of image, $d=2 \mathrm{~cm}$
Height of tower, $h_{2}=80 \mathrm{~m}$
$\because \quad, \frac{\imath_{2}}{-h_{1}}$
$\Rightarrow H-h_{1}=\frac{r . h_{2}}{d}=\frac{6 \times 80}{2}=240 \mathrm{~m}$
For Tower A,
$\because \quad$ \&e $\frac{i_{2}}{-h_{1}}$
$r=4 \mathrm{~cm}, d=1.5 \mathrm{~cm}, H-h_{1}=240 \mathrm{~m}$
$\Rightarrow h_{2}=90 \mathrm{~m}$
56. Ans. B.

Through means including every possible detail, parts or complete or absolute.
57. Ans. C.

In order to verify this propositions we have to turn to card 2 and blue from given 4 cards as proposition says it has even an one side opposite is red. Vice-verse might or might not be true so, answer (C) as all other options are eliminated.
58. Ans. B.

Required probability $=\frac{\not 8}{36}=\frac{2}{9}$
59. Ans. B.

$$
\begin{aligned}
& \frac{\left(\frac{16}{25}\right)^{x+2}}{\left(\frac{3}{5}\right)^{2 x+4}} \times 81=144 \\
& \Rightarrow\left(\frac{4}{3}\right)^{2 x+4} \times 81=144 \Rightarrow\left(\frac{4}{3}\right)^{2 x} \cdot \frac{4^{4}}{3^{4}} \times 81=144 \\
& \Rightarrow\left(\frac{4}{3}\right)^{2 x}=\frac{9}{16} \Rightarrow x=-1
\end{aligned}
$$

60. Ans. B.

Conditional tense type (3 had+ third verb +would have + third verb)
61. Ans. C.

(OR)

P <---> U Now, P \& U switch seats; then there are 2 possibilities

62. Ans. A.

People coming out in the same order in which they enter indicates that the centre operates on a first come first serve basis.
63. Ans. C.
: "Kalimpong is at a lower elevation than Darjeeling" \& "Siliguri is at a lower elevation than Gangtok" can be easily inferred from the given paragraphs.
64. Ans. D.

Let cycling speed=C; and walking speed=W
$C\left(\frac{1}{2}\right)+W\left(\frac{3}{2}\right)=19 \ldots .(1)$
$C+W=26 \ldots$. (2)
On solving (1) \& (2), we get $W=6 \mathrm{~km} / \mathrm{hr}$
65. Ans. D.
(i). is incorrect as its has more directly.
(ii). is incorrect as it stayed for maximum duration on ground floor.

