Solutions

1. Ans. B.

The official answered respectfully that the complaints of the citizen would be looked into.
2. Ans. B.
insured-the person, group, or organization whose life or property is covered by an insurance policy.
ensured- to secure or guarantee
3. Ans. B.

There are 4 kings in a pack of 52 cards.
If 2 cards are selected and both are kings, remaining cards will be 50 out of which 2 will be kings.
4. Ans. C.
vernacular- expressed or written in the native language of a place indigent -deficient in what is requisite
5. Ans. A.
$\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$

6. Ans. C.

In thousands place, 9 digits except 0 can be placed In hundreds place, 9 digits can be placed (including 0, excluding the one used in thousands place)
In tens place, 8 digits can be placed (excluding the ones used in thousands and hundreds place)
In ones place, 7 digits can be placed (excluding the one used in thousands, hundreds and tens place)
Total number of combinations $=9 \times 9 \times 8 \times 7=4536$
7. Ans. D.
dreary- depressingly dull and bleak or repetitive.
8. Ans. A.

9. Ans. D.

Type-I achieved a growth of 53% in the period which is higher than any other type of battery
10. Ans. D.

Statement I can be used to solve the question if capacity of both tanks is already known
Statement-II can be used if it is known what quantity of each tank is full/empty.
Therefore, by using both statements
Let capacity of tank B is x
$\frac{70}{100} x=14000$
$=x=20000$ gallons
Solution in tank $\mathrm{A}=\frac{80}{100} \times 14000=11200$ gallons
Solution in tank $A=\frac{40}{100} \times 20000=8000$ gallons
\therefore Total solution $=11200+8000=19200$ gallons
11. Ans. B.
$e_{\text {min }}=\frac{L}{500}+\frac{D}{30}($ or $) 20 \mathrm{~mm}$ which ever is minimum.
$\mathrm{e}_{x x}=\frac{3000}{500}+\frac{600}{30}=26 \mathrm{~mm}$
$e_{y y}=\frac{300}{500}+\frac{450}{30}=21 \mathrm{~mm}$
12. Ans. D.

Fround number $=\frac{V}{\sqrt{g y}}$
$V \alpha \sqrt{y}$
$V . \alpha \sqrt{L_{r}} \quad \because$
13. Ans. B.
$I=\int_{0}^{\pi / 2} \frac{\cos x+i \sin x}{\cos x-i \sin x} d x i s$:
$=\int_{0}^{\pi / 2} \frac{e^{i x}}{e^{-i x}} d x=\int_{0}^{\pi / 2} e^{2 i x} d x$
$=\left(\frac{e^{2 i x}}{2}\right)_{0}^{\pi / 2}$
$=\frac{1}{2}\left[e^{\frac{2 i x}{2}}-e^{0}\right]$
$=\frac{1}{2}\left[e^{\pi i}-e^{0}\right]$
$=\frac{1}{2}[\cos \pi+i \sin \pi-1]$
$=\frac{1}{2}[-1+0-1]=-1$
14. Ans. C.

Carbon monoxide effects the bloods carrying capacity
15. Ans. A.

As rotation and horizontal deflection in zero as per given figure. Therefore its stiffness is ' ∞ ' as deflection $=0$. stiffness $=\frac{\text { Force }}{\text { deflection }}$ and stiffness is zero in y direction
16. Ans. B.

Given $A=\left[a_{i j}\right] 1 \leq i, j \leq n, n \geq 3$ and $a_{i j}=i, j$
$\Rightarrow A=\left\{\begin{array}{llll}1 & 2 & 3 & --- \\ 2 & 4 & 6 & --- \\ 3 & 6 & 9 & --- \\ - & - & - & ----\end{array}\right\}$
If we apply $R_{2}-2 R_{1}, R_{3}-3 R_{1} \ldots \ldots \ldots$
Every row will be zero row, except first row in echelon form
$\therefore \rho(A)=1$
17. Ans. B.
18. Ans. A.

According to IS : 800-1984 Under Clause 3.7 and in Table 3.1, Maximum slenderness ratio in M due to live loads $=180$ And M aximum slenderness ratio in N due to windload $=350$ Hence, λ for $M<\lambda$ for N
19. Ans. D.
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{2 x}$
$=\left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right)^{2}$
$=e^{2}$
20. Ans. A.
$\sum B S=3.085 \quad \sum F . s=5.645 m$
Fall $=\sum F s-\sum B S=5.645-3.085=2.560$
$R . L$ of last station $=$ R.L first-fall
$=-100-2.560=97.440 \mathrm{~m}$

21. Ans. A.

Friction Circle method assumes circular slip sur face of radius (r). The resultant reaction between the two portions of the soil mass is tangential to a concentric smaller circle of radius of $r \sin \phi$ which is called friction circle
22. Ans. D.

Because $q_{u}=C N_{c}+8 D N_{q}+0.5 \gamma B N_{r}$
It is clay $\therefore \phi=0 \Rightarrow N_{r}=0, N_{q}=1$
$q_{u}=C N_{C}+\gamma D$
$q_{n u}=C N_{C}+\gamma D-\gamma D=C N_{C}$
23. Ans. C.

Total dissolved solids $($ TDS $)=500 \mathrm{mg} / \mathrm{l}$
TDS \% = $(500 * 100) /(1000 * 1000)=0.05$
24. Ans. B.
$f(x)=-2+6 x-4 x^{2}+(0.5) x^{3}$
$x_{0}=0$
$f^{\prime}(x)=6-8 x+1.5 x^{2}$
$f(0)=-2 \quad f(0)=6$
By Newton-Raphson method

$$
\begin{aligned}
\mathrm{x}_{1}= & x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=0-\frac{(-2)}{6} \\
& =\frac{2}{6} \\
& =0.3333
\end{aligned}
$$

$\Delta x=x_{1}-x_{0}=0.3333-0=0.3333$
25. Ans. B.

Prying forces are t ensile forces due to the flexibility of connected parts.
26. Ans. D.
$\tau_{\theta}=\frac{\sigma_{x}-\sigma_{y}}{z} \sin 2 \theta+\tau_{x y} \cos 2 \theta$
$+\tau_{x y}=0 \& \sigma_{x} \& \sigma_{y}$ are equal
$\therefore \sigma_{x}-\sigma_{y}=0$
$\therefore \tau_{\theta}=0$ in any direction

27. Ans. A.

$R=335 m$
$e=\tan \theta=\tan 33^{\circ}=0.649$
$e+f=V^{2} \div 127 R$
$0.649+f=320^{2} \div(127 * 335)$
$f=1.756=1.76$
28. Ans. B.

Let us take R_{c} as redundant Deflection at B due to load at C
Deflection at C due to load at $B(\Delta B C)$
[By Marshall reciprocal theorem]
so, $\Delta_{B C}=\frac{10 \times(.75)^{3}}{3 E_{I}}+\frac{10 \times(.75)^{2}}{2 E_{I}} 0.25$
$=\frac{2.11}{E_{I}} \downarrow$
Deflection at C due to Redundant Rc
$\Delta_{c c}=R_{C} \times \frac{(.75)^{3}}{3 E_{I}}=\frac{0.141 R_{C}}{E_{I}} \uparrow$
\because
$\Rightarrow \frac{2.11}{E_{I}}-\frac{.141 R_{C}}{E_{I}}=0$
$\Rightarrow R_{C}=15 \mathrm{kN}$

$M_{x}=10 \times x-15 \times(x-.25)=0$
$\Rightarrow 10 x-15 x-3.75=0$
$\Rightarrow x=0.75 \mathrm{~m}$
So, distance of point of contraflexure from end $A=1$ $0.75=0.25 \mathrm{~m}$
29. Ans. B.
$S=100 \% e=\frac{w n}{S_{r}}=e=\frac{100 G}{100}=G$
30. Ans. A.

$\therefore \mathrm{Sy}+\mathrm{Sr}=\eta$
31. Ans. D.
$f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$ are the necessary and sufficient conditions for a particular point
32. Ans. A.
$C=0.0673 d^{2}=0.0673 \times 1$
33. Ans. D.

Surcharge load to be placed as $=\frac{2 c}{\sqrt{k_{a}}}$
34. Ans. B.

Convective acceleration $=u \frac{d u}{d x}+v \frac{d u}{d y}+w \frac{d u}{d z}$

$$
=1.5 \frac{(15-1.5)}{0.375}=54 \mathrm{~m} / \mathrm{s}^{2}
$$

35. Ans. A.

Lengths of turning lanes should be maximum of (2 times the average number of vehicles (by vehicle type) that would store in turning lane per cycle during the peak hour \& Average number of vehicles (by vehicle type) that would store in the adjacent through lane per cycle during the peak hour)
36. Ans. C.
$y_{u}=20 \mathrm{mg} / L$
After 7 days $=y_{u} e^{-k t}=20 \times e^{0.15 \times 7}=7$
$\%$ is $=\frac{7}{20}=35 \%$
exerted $=100-35=65 \%$
37. Ans. D.

$k=F / \delta k=R / \delta \delta=R / K$
δ for cantilever
$\delta=\frac{(P-R) L^{3}}{3 E I}=R / K$
$\frac{(50-R) 200^{3}}{3 \times 200 \times 10^{5} \times \frac{5 \times 10^{5}}{12}}=R / z$
$R=3 N$
38. Ans. B.

Resistance to impact \rightarrow Toughness
Resistance to wear \rightarrow Hardness
Resistance to weathering \rightarrow Soundness
Resistance to crushing \rightarrow Strength
39. Ans. C.

$O A=\sqrt{(250)^{2}-\left(\frac{1}{2}\right)^{2}}=249.9995 m$
$\Delta A A^{\prime}=0.0005 \mathrm{~m}$
40. Ans. A.

above $=B=k a_{1} 8 H=\frac{1}{2} \times 18 \times 3=18 \mathrm{ka} 1$
below $B=k a_{2} 8 E-2 c \sqrt{k a_{2}}$
$=1 \times 18 \times 3-2 \times 20 \sqrt{1}=14 \mathrm{KN} / \mathrm{m}^{2}$
$P_{C}=K a_{2} \gamma z-2 c \sqrt{K a_{2}}=18 \times 6-2 \times 20$
$P_{a}=\frac{1}{2} \times 18 \times 3+\frac{1}{2}(14+68) \times 3=150 \mathrm{kN} / \mathrm{m}^{2}$
41. Ans. A.

Maximum bending stress occurs at the point of maximum bending moment. Maximum B.M. will occur under one of the point load such that resultant of the load system and point load under consideration is equidistant from the centre.

$\sigma=\frac{M}{I} \cdot y \frac{M}{Z}=\frac{28.5 \times 10^{6}}{16.2 \times 10^{3}}=1759.2 G P a$
42. Ans. A.
$f(x)=\frac{x}{4}\left(4-x^{2}\right)$ for $0 \leq x \leq 2$
mean $=\mu_{x}=E(x)$
$=\int_{0}^{2} x f(x) d x$
$=\int_{0}^{2} x\left(\frac{x}{4}\right)\left(4-x^{2}\right) d x$
$=\frac{1}{4} \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x$
$=\frac{1}{4}\left[\frac{4 x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2}$
$=\frac{1}{4}\left[4 \cdot \frac{8}{3}-\frac{32}{5}\right]$
$=\frac{32}{4}\left[\frac{1}{3}-\frac{1}{5}\right]$
$=8\left[\frac{2}{15}\right]=\frac{16}{15}=1.0667$
43. Ans. D.

Loss = 10\%
Find force $=750 \mathrm{kN}$
Initial force $=\frac{750}{0.9}=833.33 \mathrm{kN}$
Top \& Bottom stress $=\frac{P}{A} \pm m / z$

$$
\begin{aligned}
& =\frac{833.33}{250 \times 400} \times 10^{3} \pm \frac{833.33 \times 10^{3} \times 100 \times 6}{250 \times 400^{2}} \\
& =8.33 \pm 12.5
\end{aligned}
$$

Top $=-4.166(\mathrm{~T})$
Bottom $=20.833(\mathrm{C})$
44. Ans. C.
e = ?
$\gamma_{\text {moist sand }}=\frac{1010}{588}=1.717 \mathrm{~g} / \mathrm{cc} \quad \gamma_{d}=\frac{G \gamma_{\omega}}{1+e}$
$\gamma_{d}=\frac{918}{588}=1.561 \mathrm{~g} / \mathrm{cc} \quad 1.561=\frac{2.67 \times 1}{1+e}$
$e=0.71$
45. Ans. A.

$h_{f}=\frac{\mathrm{fl} Q^{2}}{12.1 d^{5}}$
$h_{f_{1}}+h_{f_{2}}=30 m \rightarrow$ in parallel
$\frac{0.024 \times 3000 \times Q^{2}}{12.1 \times 0.7^{5}}+\frac{0.024 \times 3000(Q-0.15)^{2}}{12.1 \times 0.7^{5}}=30$
$Q=0.7216 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{B}=Q-0.15=0.5716 \mathrm{~m}^{3} / \mathrm{s}$
46. Ans. B.
$\Delta H=\frac{C_{C}}{1+e_{0}} H_{0} \log _{10}\left(\frac{\sigma_{0}+\Delta \sigma}{\sigma_{0}}\right)$
$=\frac{0.6}{1+1.3} \times 4 \log _{10}\left(\frac{\sigma_{0}+\Delta \sigma}{\sigma_{0}}\right)$
$=0.314 \mathrm{~m}$
$\Delta_{H}=314 m m$
47. Ans. A.

As we consider fck as the value of compressive strength for a sample below which not more than 5% specimen are expected to fail. \therefore
Chances of no failure $=100-5=95 \%$
So, probability of failure $=$
$=\left[1-\mathrm{P}^{2}\right]=\left(1-0.95^{2}\right)=0.0975$
48. Ans. D.

Difference in elevation of A and B
Reciprocal leveling
$\Delta_{h}=\frac{\left(b_{1}-a_{1}\right)+\left(b_{2}-a_{2}\right)}{2}=\frac{(1.55-1.35)+(10.75-0.55)}{2} \mathrm{RL}$
$\Delta h=0.20$
of $B=R L$ of $A-0.20=100 m$
From the reading, we can see A is at higher level than B.
49. Ans. B.

Stress path equations

$\frac{\sigma_{1}-\sigma_{3}}{2}=C \cos \phi+\frac{\sigma_{1}-\sigma_{3}}{2} \sin \phi$
$q=10 \sqrt{3}+0.5 P$
$C \cos \phi=10 \sqrt{3}$
$\operatorname{Tan} \beta=\sin \phi=0.5 \quad \phi=\sin ^{-1} \cos 7=30^{\circ}$
$C \cos 30=10 \sqrt{3} \quad C=20^{\circ}$
50. Ans. A.

For incompressible flow. $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
For irrotational flow. $\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)=0$
(1) $\frac{\partial}{\partial x}\left(\frac{y^{3}}{3}+2 x-x^{2} y\right)+\frac{\partial}{\partial y}\left(x y^{2}-2 y-\frac{x^{3}}{3}\right)=0$

$$
2-2 x y+2 x y-2=0
$$

(2) $\frac{\partial}{\partial x}\left(x y^{2}-2 y-\frac{x^{3}}{3}\right)-\frac{\partial}{\partial x}\left(\frac{y^{3}}{3}+2 x-x^{2} y\right)$ $y^{2}-x^{2}-y^{2}+x^{2}=0$
51. Ans. B.

Force on gate $=\frac{1}{2} \times 1.5 \times 2 \times G \gamma_{\omega}\left(1.5+\frac{2}{3} \times 1.5\right)$

$$
\begin{aligned}
& =0.8 \times 9810 \times 2.5 \times 1.5 \\
= & 29.43 \mathrm{kN}
\end{aligned}
$$

52. Ans. B.
$10 \mathrm{~m}^{3} / \mathrm{s} 10 \mathrm{~cm}$

Reservoir

$\because \quad$ n storage $=$ inflow-outflow
$\Delta S=Q_{i}+Q_{R}-Q_{0}-Q_{S}-Q_{E}$
$\Rightarrow 16 \times 10^{6}=(10 \times 86400 \times 30)+\left(0.1 \times 20 \times 10^{6}\right)$
$-(15 \times 86400 \times 30)-\left(1.8 \times 10^{-2} \times 20 \times 10^{6}\right)$
$\Rightarrow Q_{E}=\frac{27320000}{20 \times 10^{6}}=1.366 \mathrm{~m} \simeq$
53. Ans. D.

Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & p\end{array}\right]$
Given that two eigen values of A are in 3:1
Ratio for $p=2$
\Rightarrow Characteristic equation $\lambda^{2}-4 \lambda+3=0$ (by substituting $\mathrm{p}=2$)
$\Rightarrow \lambda=1,3$
If we take $p=\frac{14}{3}$ then $A=\left[\begin{array}{cc}2 & 1 \\ 1 & \frac{14}{3}\end{array}\right]$
$\Rightarrow \lambda^{2}-\left(2+\frac{14}{3}\right) \lambda+\left(\frac{28}{3}-1\right)=0$
$\Rightarrow \lambda^{2}-\frac{20}{3} \lambda+\frac{25}{3}=0$
$\Rightarrow 3 \lambda^{2}-20 \lambda+25=0$
$\lambda=5, \frac{5}{3}$
Eigen values $5, \frac{5}{3}$ are in ratio $3: 1$
$\therefore p=\frac{14}{3}$

54. Ans. A.

Given
$\frac{d^{2} y}{d x^{2}}=-12 x^{2}+24 x-20$
$y(0)=5 y(2)=21$
$y(1)=$?
Auxillary equation $\mathrm{m}^{2}=0$

$$
m=0,0
$$

$$
\begin{aligned}
& y_{c}=\left(c_{1}+c_{2} x\right) e^{0_{x}}=c_{1}+c_{2} x \\
& y_{p}=\frac{1}{D^{2}}\left(-12 x^{2}+24 x-20\right) \\
& =-12 \frac{x^{4}}{12}+24 \cdot \frac{x^{3}}{6}-20 \cdot \frac{x^{3}}{2!} \\
& =-x^{4}+4 x^{3}-10 x^{2} \\
& y=c_{1}+c_{2} x+10 x^{2}+4 x^{3}-x^{4} \\
& y(0)=5 \Rightarrow c_{1}=5 \\
& y(2)=21 \Rightarrow 21=5+2 c_{2}+40+32-16 \\
& 21=2 c_{2}+61 \\
& c_{2}=-20 \\
& y=5-20 x+10 x^{2}+4 x^{3}-x^{4} \\
& y(1)=5-20+10+4-1 \\
& =-2
\end{aligned}
$$

55. Ans. D.

Given $h=\Delta x=0.4$
$f(x)=0.2+25 x-200 x^{2}+675 x^{3}$

$$
-900 x^{4}+400 x^{5}
$$

$x_{0}=0 \quad x_{n}=0.8 \Rightarrow n=\frac{0.8-0}{0.4}=0$

x	0	0.4	0.8
$y=f(x)$	0.2	24.456	-126.744

By Simpson's $\frac{1}{3}$ Rule
$\int_{0}^{0.8} f(x) d s=\frac{0.4}{3}[(0.2-126.744)+4(24.456)]=-3.8293$
56. Ans. C.

Rafi crops Gran and wheat
$Q_{1}=\frac{A_{1}}{D_{1}}=\frac{200 \times 0.3}{8.64 \times \frac{18}{0.12}}=0.463 \mathrm{~m}^{3} / \mathrm{s} ;$ Duty $=8.64 \frac{B}{\Delta}$
$Q_{2}=\frac{A_{2}}{D_{2}}=\frac{2000 \times 0.5}{8.64 \times \frac{18}{0.15}}=0.964 \mathrm{~m}^{3} / \mathrm{s}$
$\therefore \mathrm{Q}_{1}+Q_{2}$ is required $=0.964+0.463=1.427 \mathrm{~m}^{3} / \mathrm{s}$
57. Ans. B.
$u=70-7 k$

Capacity $=u \times k, q=u k$
$q=(70-0.7 k) k$
$\frac{d q}{d k}=70-0.7 \times 2 k=0 \Rightarrow k=50 \mathrm{~V} / \mathrm{km}$
$q=(70-0.7 \times 50) \times 50=175 \mathrm{~V} / \mathrm{hr}$.
58. Ans. D.

Total water filters $=24 \times 3600 \times 1=86400 \mathrm{~m}^{3} /$ day .
$S . A=\frac{86400}{120}=720 \mathrm{~m}^{2}$.
Area of one filter $=6 \times 10=60 \mathrm{~m}^{2}$.
Totalno.of filters $=\frac{720}{60}=12$ filters .
2out of services, total filters $=10$.
S.A of filters $=60 \times 10=600 \mathrm{~m}^{2}$.

Total loading rate $=\frac{86400}{600}=144 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}$.
59. Ans. A.

Ultimate Bearing capacity, Q_{u}
$=\lambda\left(\sigma_{v . a v g}+2 c_{u}\right) A_{s}$
$=0.15\left[18 \times 12.5+2 C_{u}\right] \times[\pi \times 0.4 \times 25]$
$w=0$
$\Rightarrow q_{u}=1060.29 \mathrm{kN}$
60. Ans. A.
$G_{t}=\frac{w_{1}+w_{2}+w_{3}+w_{4}}{\frac{w_{1}}{G_{1}}+\frac{w_{2}}{G_{2}}+\ldots . .}$
$=\frac{100}{\frac{55}{2.0}+\frac{35.8}{2.7}+\frac{3.7}{2.65}+\frac{5.5}{1.01}}=2.424$
Eff 'G' of aggregates G (fine+coarse)
$G=\frac{(55.26)+(35.8 \times 27)}{55+35.8}=2.64$
61. Ans. A.

External work done
$=\frac{1}{2} \times \rho \times L . \theta$
Strain energy stored in spring

$$
\begin{align*}
& =\frac{1}{2} \times k \times(2 \theta) \times(2 \theta) \\
& =2 k \cdot \theta^{2} \tag{ii}\\
& (i)=(i i) \\
& \Rightarrow \frac{1}{2} P L \theta=2 k \cdot \theta^{2} \\
& \Rightarrow \theta=\frac{P L}{4 k}
\end{align*}
$$

62. Ans. C.

Plastic hinges formed $=3$
(1)

$\alpha=\frac{\theta}{2}$
$\theta=2 \alpha$
$\theta=\frac{\Delta}{L / 3}$
$\Delta=\frac{L}{3} \theta$
$\Delta=\frac{\alpha 2 L}{3}$.
$\theta=2 \alpha$.
$2 M_{p} \theta+2 M_{p} \theta+2 M_{p} \alpha+M_{p} \alpha=W \Delta$
$2 M_{p} \theta+2 M_{p} \theta+M_{p} \theta+M_{p} \frac{\theta}{2}=Q \times \frac{L}{3} \theta$
$5.5 M_{p}=\frac{W L}{3} \Rightarrow W=\frac{16.5}{L} M_{P}$
(2)

$2 M_{P} \theta+M_{P} \theta+M_{P} \Delta+M_{P} \theta=W \times \Delta$
$5 M_{P} \theta=W \frac{L}{3} \theta$
$15 \frac{M_{P}}{L}=W$
Lowest is collapse load $\frac{15 M_{P}}{L}$
63. Ans. C.
$Q=32.5 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$
$L=32.5 \mathrm{~m}$
$B=8 m$
$D=2.25 m$
$V_{0}=\frac{Q}{B L}$
$Q=V_{0} B L$
$=32.5 \times 32.5 \times 8$
$=8450 \mathrm{~m}^{3} / \mathrm{d}$
Weirlength $=75 \mathrm{~m}$.
$q=\frac{8450}{75}=112.67 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}$
64. Ans. C.

Total soild waste generated $=2 \mathrm{~kg} \times 2 \times 10^{5}$
$=400000 \mathrm{~kg} / \mathrm{day}$
For 25 years $=400000 \times 365 \times 25$
$=3.65 \times 10^{9} \mathrm{~kg}$
compaction ratio $=0.4=\frac{\text { volume after compaction }}{\text { volume before compaction }}$
$V=\frac{3.65 \times 10^{9}}{100}=3.65 \times 10^{7} \mathrm{~m}^{3}$
$V^{\prime}=0.4 \times 3.65 \times 10^{7}=1.46 \times 10^{7} \mathrm{~m}^{3}$
$\frac{\mathrm{sw}+\text { cover }}{s w}=\frac{s w}{s w}+\frac{\text { cover }}{s w}=1.5$
$\Rightarrow \frac{\text { cover }}{s w}=0.5$
\Rightarrow cover $=0.5 \times 1.46 \times 10^{7}=0.73 \times 10^{7} \mathrm{~m}^{3}$
Total volume $=\left(1.46+0.73 \times 10^{7}\right)=21.9 \times 10^{6} \mathrm{~m}^{3}$

$$
=21.9 \text { million } m^{3}
$$

65. Ans. C.

Let $s_{1} s_{3}=1_{1}, s_{2} s_{3}=1_{2}$
Northing of $S_{3}=500+1_{1} \cos 45^{\circ}$

$$
=450+1_{2} \cos 26^{\circ} 34^{\prime}
$$

$\Rightarrow 1_{1} \cos 45^{\circ}-1_{2} \cos 26^{\circ} 34^{\prime}=-50$
Easting of S_{3}
$500+1_{1} \sin 45^{\circ}=600-1_{2} \sin 26^{\circ} 34^{\prime}$
$1 \sin 45^{\circ}+1_{2} \sin 26^{\circ} 34^{\prime}=100$
$\Rightarrow 1_{1}=70.71,1_{2}=111.80$
Easting of $S_{3}=500+70.71 \times \sin 45^{\circ}$
$=549.99 \mathrm{~m} \simeq$

