Solutions

1. Ans. C.

Given $2 x+3 y=5$
$3 x+p y=10$
$\Rightarrow\left[\begin{array}{ll}2 & 3 \\ 3 & p\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ 10\end{array}\right]$
$A X=B$
Augmented matrix $[A / B]=\left[\begin{array}{lll}2 & 3 & 5 \\ 3 & p & 10\end{array}\right]$
$\mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}-3 \mathrm{R}_{1}\left[\begin{array}{lll}2 & 3 & 5 \\ 0 & 2 \mathrm{p}-9 & 5\end{array}\right]$
System will have no solution if $\rho(A / B) \neq \rho(A)$
$\Rightarrow 2 \mathrm{p}-9=0$
$\Rightarrow \mathrm{p}=\frac{9}{2}=4.5$

2. Ans. A.

We know that the approximated value of $\int_{a}^{b} f(x) d x$
obtained by trapezoidal rule is always greater than the analytical value.
$\therefore \mathrm{J}>$ I where $\mathrm{J}=$ approximate value
I =analytical value
3. Ans. B.
$p(x, q)=q \quad$ if $X=0$
$=1-q$ if $X=1$
0 otherwise
given $\mathrm{q}=0.4$
$\Rightarrow p(x, q)=0.4$ if $X=0$
$=0.6$ if $X=1$
$=0$ otherwise

X	0	1
P	0.4	0.6
$(X=x)$		

Required value $=\mathrm{V}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-\{\mathrm{E}(\mathrm{X})\}^{2}$
$\mathrm{E}(\mathrm{X})=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=0 \times 0.4+1 \times 0.6=0.6$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum \mathrm{x}_{\mathrm{i}}^{2} \mathrm{p}_{\mathrm{i}}=0^{2} \times 0.4+1^{2} \times 0.6=0.6$
$\mathrm{V}(\mathrm{X})=0.6-(0.6)^{2}$
$=0.6-0.36$
$=0.24$
4. Ans. D.

As the slump increases, the Vebe time decreases. In this case statement (i) is incorrect.
Whereas statement (ii) is correct as if Vebe time decreases then compaction factor increases
5. Ans. A.
(i) Air-entrainment reduces the water demand for a given level of workability-True
(ii) Use of air-entrained concrete is required in environments where cyclic freezing and thawing is expected.-True
6. Ans. B.

At

Strain variation

Stress variation

Hence, The variation of strain is linear and that of stress is non-linear.
So, Option (B) is correct answer.
7. Ans. B.

The ratio of the force acting on a linear mechanical system, such as a spring, to its displacement from equilibrium.

8. Ans. A.
$\mathrm{L}_{\mathrm{d}}=\frac{\phi \sigma_{\mathrm{s}}}{4 \tau_{\mathrm{bd}}}$ But for deformed bars $\tau_{\text {bd }}$ is increased by 60%.
So,
$\mathrm{Ld}=\frac{\phi \sigma_{\text {st }}}{4 \times 1.6 \times \tau_{\text {bd }}}=\frac{\phi \sigma_{\mathrm{s}}}{6.4 \tau_{\text {bd }}}$
So, $k=6.4$.
9. Ans. C.

Since, $\frac{F \times D}{2}=\frac{10 \times 1}{2}=5 \mathrm{kN}-\mathrm{m}$
So option (C) is correct answer.
10. Ans. A.
$\sigma_{\mathrm{n}}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2} \cos 2 \theta$
$=\frac{100-100}{2}+\frac{100-(-100)}{2} \cos 90=0$

11. Ans. C.
$\mathrm{I}_{\mathrm{p}}=\mathrm{W}_{\mathrm{L}}-\mathrm{W}_{\mathrm{p}}=40-28=12 \%$
Activity $=\frac{I_{p}}{C}=\frac{12}{100-60}=0.3$
12. Ans. B.
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{n}} \because$
So, VS > V always
So, seepage velocity $\left(\mathrm{V}_{\mathrm{S}}\right)$ can never by smaller than discharge velocity.
13. Ans. A.

As thickness of sampler increases, disturbance increases, So, Thinner the sampler wall, lower the degree of disturbance of collected soil sample is true for the above statement.
14. Ans. C.

In the given condition,
$\mathrm{B}=\frac{\Delta \mathrm{U}}{\Delta \sigma_{3}}=\frac{80}{100}=0.8$
Where, $\Delta \mathrm{U}=$ Increase in the pore pressure.
$\Delta \sigma_{3}=$ difference of cell pressure.
15. Ans. D.

Since, Liquefaction is due to cyclic loads, not due to high hydraulic gradient
So, optionD. is not the correct statement.
16. Ans. C.

Continuity equation
$\frac{\partial}{\partial x}(\rho Y)+\frac{\partial}{\partial y}(\rho V)=0$
$\Rightarrow \frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}\left(\frac{1}{x} . V\right)=0$
$\Rightarrow 1+\frac{\partial}{\partial y}\left(\frac{V}{x}\right)=0 \Rightarrow \frac{\partial}{\partial y}\left(\frac{V}{x}\right)=-1$
$\Rightarrow V=-x y$

17. Ans. B.

All fluids are compressible - even water - their density will change as pressure changes. Under steady conditions, and provided that the changes in pressure are small, it is usually possible to simplify analysis of the flow by assuming it is incompressible and has constant density. As you will appreciate, liquids are quite difficult to compress - so under most steady conditions they are
treated as incompressible. In some unsteady conditions very high pressure differences can occur and it is necessary to take these into account - even for liquids. Gasses, on the contrary, are very easily compressed, it is essential in most cases to treat these as compressible, taking changes in pressure into account.
Hence, the direction of flow for steady incompressible flow through a closed-conduit of uniform cross-section will always be from higher to lower pressure
18. Ans. C.
$\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{AR}^{\frac{2}{3}} \mathrm{~S}^{\frac{1}{2}} \Rightarrow \mathrm{Q}_{\text {full }}=\frac{1}{\mathrm{n}} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot\left(\frac{\mathrm{D}}{4}\right)^{\frac{2}{3}} \mathrm{~s}^{\frac{1}{2}}$
$\mathrm{Q}_{\text {half }}=\frac{1}{\mathrm{n}} \cdot \frac{\pi \mathrm{D}^{2}}{8} \cdot\left(\frac{\mathrm{D}}{4}\right)^{\frac{2}{3}} \mathrm{~s}^{\frac{1}{2}}$
$\frac{Q_{\text {full }}}{Q_{\text {half }}}=2$
19. Ans. B.

P-Gross Command Area $=1000$ ha
Q-Permanent Wilting Point $=0.12$
R-Duty of canal water $=100 \mathrm{ha} / \mathrm{cumec}$
S-Delta of wheat $=40 \mathrm{~cm}$

So, Option (b) is correct answer.
20. Ans. C.

Kjeldahal Nitrogen (TKN) is the sum of organic nitrogen and ammonia in sewage
Total Kjeldahl Nitrogen (TKN) = Ammonia (60\%) +
Organic Nitrogen (40\%)
Hence, Option (c) is correct answer.
21. Ans. A.

Let density of sludge is ρ
$\frac{c_{1}+c_{2}}{\rho}=\frac{c_{1}}{\rho_{1}}+\frac{c_{2}}{\rho_{2}}$
$\Rightarrow \rho=\frac{100}{\frac{c_{1}}{\rho_{1}}+\frac{c_{2}}{\rho_{2}}}$

22. Ans. A.

The correct answer is 80 . Because as the temperature rises from 25 to 60 degree Celsius, the viscosity of bitumen decreases and thus the penetration value should be more than 80 mm in any case.
23. Ans. D.

Free flow speed \rightarrow Speed when flow is negligible
\rightarrow Speed when density is negligible
\rightarrow Affected by Geometry, deriver's perception, roadway condition etc.
24. Ans. B.

Mean Sea Level (MSL) is used as reference surface for establishing the vertical control and not horizontal control
25. Ans. D.
$e=\sqrt{ } \ell$

$$
\sqrt{(0.3)^{5}+(0.4)^{2}}=0.5 \mathrm{~m}
$$

Relative precision $=\frac{0.5}{1000}=1: 2000$
26. Ans. D.

Let $A=\left[\begin{array}{lll}3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5\end{array}\right]$
Characteristic equation is
$|A-\lambda I|=0$
$\Rightarrow\left|\begin{array}{ccc}3-\lambda & -2 & 2 \\ 4 & -4-\lambda & 6 \\ 2 & -3 & 5-\lambda\end{array}\right|=0$
$\Rightarrow \lambda^{3}-4 \lambda^{2}+5 \lambda-2=0$
$\Rightarrow(\lambda-1)\left(\lambda^{2}-3 \lambda+2\right)=0$
$(\lambda-1)(\lambda-1)(\lambda-2)=0$
$\lambda=1,2$
27. Ans. B.
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+4$
$x_{0}=3$
$f^{\prime}(x)=2 x-4$
By Newton Raphson method $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
$=3-\frac{1}{2}=2.5$
For secant method let $x_{0}=2.5$ and $x_{1}=3$
By secant method $x_{2}=x_{1}-\frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} f\left(x_{1}\right)$
$=3-\frac{(3-2.5)}{\mathrm{f}(3)-\mathrm{f}(2.5)} \mathrm{f}(3)$
$=3-\frac{0.5}{1-(0.25)} \times 1$
$=3-\frac{0.5}{0.75}$
$=3-0.6667$
$=2.333$
28. Ans. C.

Given D.E
$x(y d x+x d y) \cos \frac{y}{x}=y(x d y-y d x) \sin \frac{y}{x}$
$\Rightarrow x(y d x+x d y) \cos \frac{y}{x}+\left(-\sin \frac{y}{x}\right) y(x d y-y d x)=0$
$\Rightarrow(y d x+x d y) \cos \left(\frac{y}{x}\right)+\left(-\sin \frac{y}{x}\right) \frac{y(x d y-y d x)}{x}=0$
$\Rightarrow(y d x+x d y) \cos \left(\frac{y}{x}\right)+(x y)\left(-\sin \frac{y}{x}\right)\left(\frac{x d y-y d x}{x^{2}}\right)=0$
By observing, the above equation is $d\left((x y) \cos \frac{y}{x}\right)=0$
By integrating, $x y \cos \left(\frac{y}{x}\right)=c$
29. Ans. A.

$$
\mathrm{f}(3)=\frac{9}{(z-1)(z+2)^{2}}
$$

$z=1$ is a simple pole
$z=-2$ is a pole of order 2

$$
\begin{aligned}
& {[\operatorname{Res} f(z)]_{z=1}=\lim _{z \rightarrow 1}(z-1) \frac{9}{(z-1)(z+2)^{2}}=\frac{9}{9}=1} \\
& {[\operatorname{Res} f(z)]_{z=2}=\frac{1}{1!\lim _{z \rightarrow-2} \frac{d}{d z}\left[(z+2)^{2} \cdot \frac{9}{(z-1)(z+2)^{2}}\right]}} \\
& =\lim _{z \rightarrow-2} \frac{-9}{(z-1)^{2}} \\
& =\frac{-9}{9}=-1
\end{aligned}
$$

30. Ans. D.

Let $u(x, y, z)=x^{2}-3 y z$
$\vec{a}-1, \mathrm{~J}-\angle \mathrm{k}$ and $\mathrm{P}(2,-1,4)$
$\nabla \mathrm{u}=\mathrm{i} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{j} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}+\mathrm{k} \frac{\partial \mathrm{u}}{\partial \mathrm{z}}$
$=\mathrm{i} 2 \mathrm{x}+\mathrm{j}(-3 \mathrm{z})+\mathrm{k}(-3 \mathrm{y})$
$\left.\nabla \mathrm{u}\right|_{(2,-1,4)}=4 \mathrm{i}-12 \mathrm{j}+3 \mathrm{k}$
$\mid \overrightarrow{a_{\mid}}-v_{1+1} \overline{+4}=\sqrt{6}$
directional derivative $=\nabla \mathrm{u} . \hat{\mathrm{a}}$
$=(4 \mathrm{i}-12 \mathrm{j}+3 \mathrm{k}) \cdot \frac{(\mathrm{i}+\mathrm{j}-2 \mathrm{k})}{\sqrt{6}}$
$=\frac{4-12-6}{\sqrt{6}}$
$=\frac{-14}{\sqrt{6}}=-5.72$
31. Ans. C.

$$
\begin{aligned}
& \frac{\mathrm{M}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}+\frac{\mathrm{M}_{S}}{\mathrm{P}_{S}}+\frac{\mathrm{M}_{a}}{\mathrm{P}_{a}}+\mathrm{V}_{\mathrm{W}}+\mathrm{V}_{\mathrm{a}}=1 \\
& \Rightarrow \frac{368}{3.14 \times 1000}+\frac{606}{2.67 \times 1000} \\
& +\frac{1155}{2.74 \times 1000}+\frac{184}{1000}+\mathrm{V}_{\mathrm{V}} \\
& =1.0 \\
& \Rightarrow 0.117+0.227+0.421+0.184+\mathrm{V}_{\mathrm{V}}=1.0 \\
& \Rightarrow \mathrm{~V}_{\mathrm{V}}=0.051 \\
& =0.051 \times 1000=51 \simeq 50.321 / \mathrm{m}^{3}
\end{aligned}
$$

32. Ans. A.
$F_{D}=\frac{P}{n}=\frac{100}{5}=20 \mathrm{kN}$

$\mathrm{F}_{\mathrm{t}}=\frac{(\mathrm{P} . \mathrm{d}) \mathrm{r}}{\sum \mathrm{r}^{2}}=\frac{100 \times 600 \times 75 \sqrt{2}}{4 \times(75 \sqrt{2})^{2}}=141.42 \mathrm{kN}$
$\mathrm{F}_{\mathrm{R}}=\sqrt{\mathrm{F}_{\mathrm{D}}^{2}+\mathrm{F}_{\mathrm{t}}^{2}+2 \times \mathrm{F}_{\mathrm{D}} \times \mathrm{F}_{\mathrm{t}} \cos \theta}$
$=\sqrt{(20)^{2}+(141.42)^{2}+2 \times 20 \times 141.42 \times \frac{1}{\sqrt{2}}}$
$=156.20 \mathrm{kN}$
$\cos \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45^{\circ}$
33. Ans. C.
$A_{s t}=4 \times \frac{\pi}{4} \times(12)^{2}=453 \mathrm{~mm}^{2}$
$0.36 f_{c k} \cdot b \cdot x_{u}=0.87 f_{y} A_{s t}$
$\Rightarrow \mathrm{x}_{\mathrm{v}}=\frac{0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}}{0.36 \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{b}}=\frac{0.87 \times 415 \times 453}{0.36 \times 25 \times 200}$
$=90.86 \mathrm{~mm}$
$\mathrm{X}_{\mathrm{v}, \max }=0.48 \mathrm{~d}$
$=0.4 \times 300=120 \mathrm{~mm}$
$\mathrm{x}_{\mathrm{v}}<\mathrm{X}_{\mathrm{v}, \max }$ So U.R.section
$\mathrm{M}_{\mathrm{v}}=0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{st}} \times\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{v}}\right)$
$=0.87 \times 415 \times 453(300-42 \times 90.86)=42.82 \mathrm{kNm}$
34. Ans. A.

Mechanism-I

$3 M_{p} \cdot \theta+M_{p}(2 \theta)+M P . \theta=P_{U} \times \frac{L}{4} \times \theta$
$\Rightarrow 6 \mathrm{M}_{\mathrm{p}} \cdot \theta=\mathrm{P}_{\mathrm{U}} \cdot \frac{\mathrm{L}}{4} . \theta$
$\Rightarrow P_{U}=24 \frac{M_{p}}{L}$
Mechanism-II

$1 . \phi=3 . \theta \Rightarrow \phi=3 \theta$
$3 \mathrm{M}_{\mathrm{p}} \cdot \theta+\mathrm{M}_{\mathrm{p}}(\theta+\phi)+\mathrm{M}_{\mathrm{p}} \cdot \phi=\mathrm{P}_{\mathrm{U}} \times \frac{\mathrm{L}}{4} \phi$
$\Rightarrow 3 \mathrm{M}_{\mathrm{p}} \theta+\mathrm{M}_{\mathrm{p}}(\theta+3 \theta)+\mathrm{M}_{\mathrm{p}} \cdot 3 \theta=\mathrm{P}_{\mathrm{U}} \times 3 \theta \times \frac{\mathrm{L}}{4}$
$\Rightarrow 10 \mathrm{M}_{\mathrm{p}} . \theta=\mathrm{P}_{\mathrm{U}} \times 3 \theta \times \frac{\mathrm{L}}{4}$
$\Rightarrow \mathrm{P}_{\mathrm{U}}=\frac{40}{3} \cdot \frac{\mathrm{M}_{\mathrm{p}}}{\mathrm{L}}=13.33 \frac{\mathrm{M}_{\mathrm{p}}}{\mathrm{L}}$
So, $C=13.33$
35. Ans. A.

$\Delta_{1}=\frac{4 \mathrm{P} . \mathrm{L}}{\pi \mathrm{d}_{1} \mathrm{~d}_{2} \times \mathrm{E}}$
$=\frac{4 \times 30 \pi \times 2 \times 10^{6}}{\pi \times 20 \times 10 \times 2 \times 10^{5}}$
$=6 \mathrm{~mm}$

$\Delta_{2}=\frac{\mathrm{P} \times \mathrm{L}}{\mathrm{A}_{\mathrm{E}}}$
$=\frac{4 \times 30 \pi \times 1.5 \times 10^{6}}{\pi \times 10 \times 10 \times 2 \times 10^{5}}$
$=9 \mathrm{~mm}$
$\Delta=\Delta_{1}+\Delta_{2}=15 \mathrm{~mm}$
36. Ans. A.

$\Delta=\frac{\mathrm{R}}{\mathrm{K}}$
$=\frac{\mathrm{R}}{3 \mathrm{EI}} \times 2 \mathrm{~L}^{3}$
$\Delta=\frac{2 \mathrm{R} \cdot \mathrm{L}^{3}}{3 \mathrm{EI}}$
$\frac{\mathrm{PL}^{3}}{3 \mathrm{EI}}-\frac{\mathrm{RL}^{3}}{3 \mathrm{EI}}=\frac{2 \mathrm{RL}^{3}}{3 \mathrm{EI}}$
$\Rightarrow \frac{\mathrm{PL}^{3}}{3 \mathrm{EI}}=\frac{3 \mathrm{RL}^{3}}{3 \mathrm{EI}} \Rightarrow \mathrm{R}=\frac{\mathrm{P}}{3}=33.33 \%$
37. Ans. A.

$\mathrm{R}_{\mathrm{A}} \times 3+10 \times 9=0$
$\Rightarrow \mathrm{R}_{\mathrm{A}}=-30 \mathrm{kN}$
$\mathrm{R}_{\mathrm{G}}=35 \mathrm{kN}$
Taking joint A Joint G Joint B

$\mathrm{F}_{\mathrm{x}}=10 \mathrm{kN}$
$U=\frac{F^{2} \times L}{2 A_{E}}=\frac{10 \times 10 \times 3}{2 \times 30}=5 \mathrm{kN}-\mathrm{m}$
38. Ans. B.

$$
\begin{aligned}
& \frac{\mathrm{V}}{1+\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{x}}}{1+\mathrm{e}_{1}}=\frac{\mathrm{V}_{y}}{1+\mathrm{e}_{2}}=\frac{\mathrm{V}_{z}}{1+\mathrm{e}_{3}} \\
& \gamma_{\mathrm{d}}=\frac{G}{1+e} \cdot \gamma_{\mathrm{w}} \Rightarrow 16=\frac{2.67}{1+e} \times 10 \\
& \Rightarrow e=0.67 \\
& \frac{5000}{1.67}=\frac{\mathrm{V}_{x}}{1.6}=\frac{\mathrm{V}_{y}}{1.64}=\frac{\mathrm{V}_{z}}{1.7} \\
& \Rightarrow \mathrm{~V}_{x}=4790.42 \mathrm{~m}^{3} \\
& \mathrm{~V}_{y}=4910.18 \mathrm{~m}^{3} \\
& \mathrm{~V}_{z}=5089.82 \mathrm{~m}^{3} \\
& \mathrm{C}_{\mathrm{x}}=\mathrm{C} \times 4790.42+2 \times \mathrm{C} \times 140 \\
& =5070.42 \mathrm{C} \\
& \mathrm{C}_{\mathrm{y}}=\mathrm{C} \times 4910.18+2 \times \mathrm{C} \times 80=5070.18 \mathrm{C} \\
& \mathrm{C}_{\mathrm{z}}=\mathrm{C} \times 5089.82+2 \times \mathrm{C} \times 100=5289.82 \mathrm{C}
\end{aligned}
$$

39. Ans. B.

Settlement $=\frac{C_{C}}{1+e_{0}} H_{0} \log \left(\frac{\sigma_{0}+\Delta}{\sigma_{0}}\right)$
$\sigma_{0}=15 \times 2+(18-10) \times 6+(18-10) * 5$
$=118 \mathrm{kN} / \mathrm{m}^{2}$
$\Delta \quad \frac{1500}{3}=8.488 \mathrm{kN} / \mathrm{m}^{2}$

$$
\frac{\ddot{ }}{4}(3+6+6)^{2}
$$

$\Delta \quad \stackrel{\wedge}{\sqrt{2} .7} \times 10 \log _{10}\left(\frac{118+8.488}{118}\right)$
$=0.0532 \mathrm{~m}$
$\Delta \mathrm{H}=53.236 \mathrm{~mm}$
40. Ans. B.

$T_{U}=\frac{003 \times 2 \times 86400 \times 365}{\left(\frac{20}{2} \times 100\right)^{2}}=0.189$
$\frac{\pi}{4} \mathrm{U}^{2}=0.189 \Rightarrow \mathrm{U}=0.49 \leq 60 \%$
Consolidation $=\frac{30}{0.49}=61.2 .2 \mathrm{~mm}$
Degree of consolidation for 50 mm settlement
$\mathrm{U}=\frac{50}{61.22}=0.817=81.7 \%$
$\Rightarrow \mathrm{T}_{\mathrm{v}}=1.784-0.933 \log _{10}(100-\mathrm{U})$
$=0.608=\frac{\mathrm{C}_{\mathrm{v}} \times \mathrm{t}}{\mathrm{d}^{2}}$
$\Rightarrow \mathrm{t}=\frac{0.608 \times \mathrm{H}^{2}}{0.003 \times 10^{-4}}=\frac{0.608 \times(10)^{2}}{0.003 \times 10^{-4}} \mathrm{~S}$
$=202666667 \mathrm{~s}$
$=6.43 \mathrm{yr}$
Additional number of years $=6.43-2-4.43$ years
41. Ans. A.

$\mathbf{H}_{\mathbf{1}}$	$\mathbf{(1)}$	$\mathbf{K}_{\mathbf{1}}$	Fine sand
H_{2}	(2)	K_{2}	Silt
H_{3}	(3)	K_{3}	clay

$\mathrm{k}_{2}=10 \mathrm{k}_{3}=\frac{1}{10} \mathrm{k}_{1}$
$\Rightarrow \mathrm{k}_{1}=10 \mathrm{k}_{2}$
$=10 \times 10 \mathrm{k}_{3}$
$\mathrm{k}_{1}=100 \mathrm{k}_{3}$
$\mathrm{k}_{1}=10 \mathrm{k}_{2}$
$\mathrm{H}_{2}=2 \mathrm{H}_{1}$
$\mathrm{H}_{2}=\frac{2}{3} \mathrm{H}_{3} \Rightarrow \mathrm{H}_{3}$
$=\frac{3}{2} \mathrm{H}_{2}=\frac{3}{2} \times 2 \mathrm{H}_{1}=3 \mathrm{H}_{1}$
$\mathrm{H}_{3}=3 \mathrm{H}_{1}$
$\mathrm{K}_{\mathrm{x}}=\frac{\mathrm{K}_{1} \mathrm{H}_{1}+\mathrm{K}_{2} \mathrm{H}_{2}+\mathrm{K}_{3} \mathrm{H}_{3}}{\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}}$
$=\frac{\mathrm{K}_{1} \mathrm{H}_{1}+\frac{1}{10} \mathrm{~K}_{1} \times 2 \mathrm{H}_{1}+\frac{1}{100} \mathrm{~K}_{1} \times 3 \mathrm{H}_{1}}{\mathrm{H}_{1}+2 \mathrm{H}_{1}+3 \mathrm{H}_{1}}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{x}}=\frac{\left(1+\frac{2}{10}+\frac{3}{100}\right) \mathrm{K}_{1} \mathrm{H}_{1}}{6 \mathrm{H}_{1}}=\frac{123}{100 \times 6} \mathrm{~K}_{1} \\
& \mathrm{~K}_{\mathrm{y}}=\frac{\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}}{\frac{\mathrm{H}_{1}}{K_{1}}+\frac{\mathrm{H}_{2}}{K_{2}}+\frac{\mathrm{H}_{3}}{K_{3}}} \\
& =\frac{6 \mathrm{H}_{1}}{\frac{\mathrm{H}_{1}}{K_{1}}+\frac{2 \mathrm{H}_{1} \times 10}{K_{1}}+\frac{3 \mathrm{H}_{1} \times 100}{K_{1}}}
\end{aligned}
$$

$$
\frac{\mathrm{K}_{\mathrm{x}}}{\mathrm{~K}_{\mathrm{y}}}=\frac{123}{100 \times 6} \times \frac{321}{6}=10.967
$$

42. Ans. A.
$\mathrm{q}_{\mathrm{safc}}=\frac{\mathrm{q}_{\mathrm{nu}}}{3}$
$\mathrm{q}_{\mathrm{nu}}=\mathrm{cN}_{\mathrm{c}}+\mathrm{qN}_{\mathrm{q}}+0.5 \gamma \mathrm{BN}_{\gamma}-8 \Delta$
$\mathrm{C}=0$
$\mathrm{q}_{\mathrm{nu}}=\mathrm{q}\left(\mathrm{N}_{\mathrm{q}}-1\right)+0.5 \gamma \mathrm{BN} \gamma$
$\mathrm{q}_{\mathrm{ns}}=\frac{1}{3}\left(\mathrm{q}\left(\mathrm{N}_{\mathrm{q}}-1\right) \mathrm{F}_{\mathrm{qs}} \times \mathrm{F}_{\mathrm{qd}}+\mathrm{F}_{\mathrm{qp}}+0.5 \gamma \mathrm{BN}_{\gamma} \times \mathrm{F}_{\gamma \mathrm{s}} \times \mathrm{F}_{\gamma_{0}} \times \mathrm{F}_{\gamma \mathrm{p}}\right)$
$\mathrm{q}_{\mathrm{ns}}=\frac{1}{3}\binom{18 \times 1(33.3-1) \times 1.314 \times 1.113 \times 0.444+\frac{1}{2} \times 2 \times 18 \times}{ 37.16 \times 1.314 \times 1.113 \times 0.02}$

$$
=\frac{397.03}{3}=132.364 \mathrm{kN} / \mathrm{m}^{2}
$$

For one way shear (eccentricity) area to be reduced

Reduced area of footing $=2 \times 1.7=3.4 \mathrm{~m}^{2}$
Load carrying capacity $=132.364 \times 3.4=450 . \mathrm{kN}$
43. Ans. A.

Total loss $=20 \mathrm{~m}$
$\Rightarrow 20=\frac{0.5 \times \mathrm{v}^{2}}{29}+\frac{\mathrm{f} \times \mathrm{L}}{\mathrm{d}} \times \frac{\mathrm{v}^{2}}{2 \mathrm{~g}}+\frac{5.5 \mathrm{v}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}$
$\Rightarrow 20 \times 2 \times 10=0.5 \mathrm{v}^{2}+\frac{0.03 \times 930 \times \mathrm{v}^{2}}{0.3}+5.5 \mathrm{v}^{2}+\mathrm{v}^{2}$
$\Rightarrow \mathrm{v}^{2}=\frac{400}{100}=4$
$\Rightarrow \mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
$\theta=\frac{\pi}{4} \times \mathrm{d}^{2} \times \mathrm{v}=\frac{\pi}{4} \times(0.3)^{2} \times 2=0.1413 \mathrm{~m}^{3} / \mathrm{s}$
44. Ans. A.
$B=2 \mathrm{~m}, \mathrm{y}_{2}=0.8 \mathrm{~m}, \mathrm{U}_{2}=1 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}_{2}=\frac{\mathrm{U}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}=\frac{1}{\sqrt{10 \times 0.8}}=0.35$
$\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}=-\frac{1}{2}+\frac{1}{2} \cdot \sqrt{1+8 \mathrm{~F}_{2}^{2}}$
$\Rightarrow \frac{\mathrm{y}_{1}}{0.8}=\frac{-1}{2}+\frac{1}{2} \cdot \sqrt{1+8 \times(3.5)^{2}}=0.203$
$\Rightarrow y_{1}=0.203 \times 0.8=0.162 \mathrm{~m}$
$\mathrm{Q}=\mathrm{B} \cdot \mathrm{y}_{2} \cdot \mathrm{~V}_{2}=\mathrm{B} \cdot \mathrm{y}_{1} \cdot \mathrm{~V}_{1}$
$\Rightarrow 0.8 \times 1=0.162 \times \mathrm{V}_{1}$
$\Rightarrow V_{1}=4.94 \mathrm{~m} / \mathrm{s}$
45. Ans. C.

Adverse slope $=-\frac{1}{10000}$
$\theta=4 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{n}=0.01, \mathrm{y}=0.5 \mathrm{~m}$
$\frac{d y}{d x}=\frac{S_{0}-S_{f}}{1-F_{r}^{2}}$
$F_{r}=\frac{V}{\sqrt{g y}}=\frac{Q}{B y \sqrt{g y}}=\frac{4}{2 \times 0.5 \times \sqrt{10 \times 5}}=1.79$
$\mathrm{Q}=\frac{1}{\mathrm{n}} \mathrm{AR}^{2 / 3} \mathrm{~S}_{\mathrm{f}}^{1 / 2}$
$\mathrm{S}_{\mathrm{f}}^{1 / 2}=\frac{\mathrm{Q} \times \mathrm{n}}{\mathrm{A} \times \mathrm{R}^{2 / 3}}=\frac{4 \times 0.01}{2 \times 0.5 \times\left(\frac{2 \times 0.5}{2+1}\right)^{2 / 3}}$
$S_{f}=6.92 \times 10^{-3}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{1}{10000}-6.92 \times 10^{-3}}{1-(1.79)^{2}}=3.2 \times 10^{-3}=0.0032$
46. Ans. C.
$\frac{\rho v D}{\mu}=\operatorname{Re} \rightarrow{ }_{\text {dimensionless parameter }}$
$\frac{F_{D}\left(k g-m / s^{2}\right)}{\rho\left(\frac{k g}{m^{3}}\right) V^{2}\left(\frac{m^{2}}{s^{2}}\right) \times D^{2}\left(m^{2}\right)} \rightarrow$ Dimensionless
parameter
47. Ans. A.
$\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{N}_{\mathrm{s}}}=\frac{1}{3}\left[\frac{\mathrm{P}_{\mathrm{p}}}{\mathrm{N}_{\mathrm{p}}}+\frac{\mathrm{P}_{\mathrm{Q}}}{\mathrm{N}_{\mathrm{Q}}}+\frac{\mathrm{P}_{\mathrm{R}}}{\mathrm{N}_{\mathrm{R}}}\right]$
$\Rightarrow \frac{\mathrm{P}_{\mathrm{s}}}{980}=\frac{1}{3}\left[\frac{860}{780}+\frac{930}{850}+\frac{1010}{920}\right]$
$\Rightarrow P_{\mathrm{s}}=1076.20 \mathrm{~mm}$
48. Ans. A.

Time	UHO	S-curve Addition	S_{A}
0	0		0
2	0.6		0.6
4	3.1	0	3.1
6	10	0.6	10.6
8	13	3.1	16.1
10	9	10.6	19.6
12	5	16.1	21.1
14	2	19.6	21.6
16	0.7	21.1	21.8
18	0.3	21.6	21.9
20	0.2	21.8	22
22	0.1	21.9	22
24	0	22	22

Maximum S-curve ordinate is 22.
49. Ans. D.
$1 \mathrm{~m}^{3}$ of air has $30 \mathrm{mg} \mathrm{SO}^{2}$
$10^{6} \mathrm{~m}^{3}$ of air has $30 \mathrm{~g} \mathrm{SO}^{2}$

$$
=\frac{30}{64} \mathrm{~mol} \mathrm{SO}^{2}
$$

$V=\frac{n R T}{P}=\frac{n}{P / R T}=\frac{30 / 64}{41.6} \frac{\mathrm{~mol}}{\mathrm{~mol} / \mathrm{m}^{3}}$
$=\frac{30}{64 \times 41.6}=0.0113 \mathrm{~m}^{3}$
Concentration of SO^{2} in $\mathrm{ppm}=0.0113 \mathrm{ppm}$
50. Ans. B.
$\%$ removal $=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{s}}} \times 100$

$$
\mathrm{V}_{\mathrm{s}}^{\prime}=0.9 \mathrm{~V}_{\mathrm{s}}
$$

$$
=\frac{0.9 \times 40}{86400} \mathrm{~m} / \mathrm{s}
$$

$\Rightarrow \frac{1}{18} \times d^{2} \times \frac{g}{\mu}\left(\rho_{S}-\rho_{w}\right)=\frac{0.9 \times 40}{86400}$
$\Rightarrow \mathrm{d}=\sqrt{\frac{0.9 \times 40 \times 18 \times \mathrm{V} . \rho_{\mathrm{w}}}{86480\left(\mathrm{G}_{\mathrm{s}}-1\right) \times \rho_{\mathrm{w}} \times \mathrm{g}}}$
$\Rightarrow \mathrm{d}=22.58 \mu \mathrm{~m}$
51. Ans. B.

$$
\begin{aligned}
& \frac{\mathrm{dV}}{\mathrm{dt}}=\left(\alpha-\beta \mathrm{V}_{\mathrm{o}}\right) \mathrm{e}^{-\beta \mathrm{T}} \\
& \int \mathrm{dv}=\int\left(\alpha-\beta \mathrm{V}_{\mathrm{o}}\right) \mathrm{e}^{-\beta \mathrm{T}} \mathrm{dt} \\
& =\frac{\left(\alpha-\beta \mathrm{V}_{\mathrm{o}}\right) \mathrm{e}^{-\beta \mathrm{T}}}{-\beta} \\
& \mathrm{t}=0, \mathrm{~V}=\mathrm{V}_{0} \\
& \Rightarrow \mathrm{~V}_{0}=\frac{\left(\alpha-\beta \mathrm{V}_{\mathrm{o}}\right)}{-\beta}+\mathrm{C} \\
& \mathrm{C}=\mathrm{V}_{0}+\frac{\alpha-\beta \mathrm{V}_{\mathrm{o}}}{\beta} \Rightarrow \mathrm{C}=\frac{\alpha}{\beta} \\
& \Rightarrow \mathrm{V}=\frac{\alpha-\left(\alpha \beta \mathrm{V}_{\mathrm{o}}\right) \times \mathrm{e}^{-\beta \mathrm{t}}}{\beta} \\
& \mathrm{x}=\frac{\alpha \mathrm{t}_{0}}{\beta}+\frac{1.3}{\beta^{2}\left(\mathrm{e}^{-3 \beta}\right)}\left(\mathrm{e}^{-\beta \mathrm{e}_{\mathrm{o}}}-1\right) \\
& =\frac{2 \times 35}{0.05}+\frac{1.3\left(\mathrm{e}^{-35 \times 0.05}-1\right)}{(0.05)^{2}\left(\mathrm{e}^{-3 \times 0.05}\right)} \\
& =1400-499.17=900.83 \mathrm{~m}
\end{aligned}
$$

52. Ans. A.

$f_{N} \geq m g \sin \theta$
$\Rightarrow \mathrm{f}(\mathrm{mg} \cos \theta)=\mathrm{mg} \sin \theta$
$\Rightarrow \mathrm{f} \geq \tan \theta$
$\Rightarrow \mathrm{f} \geq \mathrm{e}$
$\Rightarrow \mathrm{e} \leq \mathrm{f}$
53. Ans. A.

For a 6/6 person, driver can see from a distance of 48 m .
For a 6/9 person, driver can see from distance $=$
The vehicle requires 174 m to show down to $30 \mathrm{~km} / \mathrm{hr}$
So, minimum distance,
54. Ans. A.

In Surveying by Law of weights, the weight of sum of two measurements is given as,
$\mathrm{A}+\mathrm{B}=\frac{1}{\frac{1}{W_{1}}+\frac{1}{W_{2}}}$
Here $X+Y+Z=\frac{1}{\frac{1}{W_{X}}+\frac{1}{W_{Y}}+\frac{1}{W_{Z}}}$
55. Ans. C.
$\delta=2^{\circ}$
Magnetic F.B. of $A B=N 79^{\circ} \ldots \ldots$.
Correct FB of $\mathrm{OA}=\mathrm{N} 50^{\circ} \ldots \ldots \ldots{ }^{\circ} .$.
\therefore Correct B.B of OA $=129^{\circ}$.
\because observed F.B. of $A O=$ observed $B B$ of $O A$
$=552^{\circ}$... ${ }^{\circ}$
Error $=$ M.V $-\mathrm{T} . \mathrm{V}=-2^{\circ} _$
Correction $+2^{\circ}$ _
т.B. of FB of $\mathrm{AB}=\mathrm{N} 79^{\circ}$ _ $\ldots . \sim^{\circ}{ }^{\circ}$
$=\mathrm{N} 84^{\circ} \ldots$.

