
6.1

Chapter 6: DFT/FFT Transforms and Applications

6.1 DFT and its Inverse
DFT: It is a transformation that maps an N-point Discrete-time (DT) signal x[n] into a function of the N
complex discrete harmonics. That is, given 1,,2,1,0];[−= Nnnx L , an N-point Discrete-time signal x[n] then
DFT is given by (analysis equation):

 1,,2,1,0][)(
1

0

2

−=∑=
−

=

−
NkforenxkX

N

n

nk
N

j
L

π

 (6.1)

and the inverse DFT (IDFT) is given by (synthesis equation):

 1,,2,1,0)(
1

][
1

0

2

−=∑=
−

=

+
NnforekX

N
nx

N

k

nk
N

j
L

π

 (6.2)

Proof:

 ∑=∑=
−

=

−−−

=

− 1

0

)(2
1

0

222

][][.).(
N

p

kpn
N

jN

p

pk
N

jnk
N

jnk
N

j
epxepxeekX

ππππ

Sum both sides over 0 to N-1:

 ∑ ∑=∑ ∑=∑=∑
−

=

−

=

−−−

=

−

=

−−−

=

−−

=

1

0

1

0

)(2
1

0

1

0

)(2
1

0

22
1

0

2

][][][.).(
N

p

N

k

kpn
N

jN

k

N

p

kpn
N

jN

p

pk
N

jnk
N

jN

k

nk
N

j
epxepxepxeekX

πππππ

 (6.3)

Using the property:

=
≠

=∑
−

=

−

pnN
pn

e
N

k

kpn
N

j 01

0

)(2π

 (6.4)

(6.3) sums to][. nxN , division by N yields (6.2).

6.2

1. These two equations form DFT pair.
2. They have both N-point resolution both in the discrete-time domain and discrete-frequency domain.

3. Always the scaling factor N/1 is associated with the synthesis equation (inverse DFT).

4.)(kX is periodic in N or equivalently in Nk /2π=Ω ; that is

)())(2()2()()(NkXNk
N

XXXkX kk +=+=+Ω=Ω= ππ (6.5)

5. x[n] determined from (6.2) is also periodic in N ;

][][Nnxnx += (6.6)

Example 6.1: Compute the DFT of the following two sequences:

 }2,1,3,1{][−−=nh and }1,0,2,1{][−=nx

where jeeeN
jj

N
j

===⇒= 24
22

4
πππ

Let us use this information in (6.1) to compute DFT values:

 3,2,1,0][)(
3

0

2 =∑=
=

−
kforenhkH

n

nkj
π

6.3

52].3[].2[]1[]0[)3(

1].3[].2[]1[]0[)2(

52].3[].2[]1[]0[)1(

1]3[]2[]1[]0[)0(

2/932/3

32

2/32/

jehehehhH

ehehehhH

jehehehhH

hhhhH

jjj

jjj

jjj

+=+++=

−=+++=

−=+++=

=+++=

−−−

−−−

−−−

πππ

πππ

πππ

Similarly,

31].3[].2[]1[]0[)3(

0].3[].2[]1[]0[)2(

31].3[].2[]1[]0[)1(

2]3[]2[]1[]0[)0(

2/932/3

32

2/32/

jexexexxX

exexexxX

jexexexxX

xxxxX

jjj

jjj

jjj

+=+++=

=+++=

−=+++=

=+++=

−−−

−−−

−−−

πππ

πππ

πππ

• Watch for the conjugate symmetry of terms; i.e., complex harmonics come in pairs.

6.2 Matrix Representation of DFT
Let us write the variables involved in matrix form: TNxxxx]]1[,],1[],0[[−= L and Nj

N eW /2π−= :

 1,,2,1,0].[)(
1

0
−=∑=

−

=
NkforWnxkX

N

n

kn
N L (6.7)

Then the weight matrix is simply:

=

−−−−

−

)1)(1()1(210

1210

0000

NN
N

N
N

N
NN

N
NNNN

NNNN

WWWW

WWWW
WWWW

W

L
MLMM

L
L

 (6.8)

which is normally referred as DFT matrix and the resulting transform vector becomes:
 xWNXXXX T .)]1(,),1(),0([=−= L (6.9)

• knnk WW][][= (6.10a)

6.4

• TWW = (6.10b)
• *1

NN WW =− ; where * stands for the complex conjugate. (6.10c)

With these we can write the inverse DFT (IDFT) as follows:

 1,,2,1,0).(1][
1

0
−=∑=

−

=

− NnforWkX
N

nx
N

n

kn
N L (6.11a)

 XWXW
N

x ..1 1* −== (6.11b)

NINWWW
N

W ...1 **1 ==− with matrixidentityNxNI N : (6.12)

6.3 Relation Between DFT and z-Transforms

Let us re-write the DFT definition:

k
N

k
N

N

n

jN

n

nk
N

j

X

enxenxkX

π

π

π

2

2

1

0

1

0

2

)(

][][)(

=Ω

=Ω

−

=

Ω−−

=

−

Ω=

∑=∑=
 (6.13)

The DFT of][nx is its DTFT evaluated at N equally spaced points in the range).2,0[π For a sequence for
which both the DTFT and the z-transform exist, we see that:

 k
N

j
ezzXkX .

2)()(π

== (6.14)

Example 6.2: Consider a discrete-time pulse signal .2.0])3[(])1[(][sTwhereTnuTnunTx =−−+= (a) Use a
six-point DFT to compute).(kX (b) Compute the IDFT of).(kX
Let us start the samples at 2.0−=t then the six samples of the periodic extension would be]1,0,0,1,1,1[][=nx .
Then the script is simply:

6.5

% Example 6.2
% Part (a)
x=[1,1,1,0,0,1]; N=size(x,2); T=0.2;
stem(x);
X=fft(x);
disp(X);

Answers>> Columns 1 through 4
 4.0000 1.5000 - 0.8660i -0.5000 + 0.8660i 0

 Columns 5 through 6
 -0.5000 - 0.8660i 1.5000 + 0.8660i

Mag=abs(X); Phase=angle(X);
% Plots; figure;
plot(n,Mag,'*'); figure;
plot(n,Phase,'+');

% Part (b)
xr=ifft(X);
figure;
stem(xr);

Input signal is exactly recovered by means of a full DFT and IDFT process.

6.6

Example 6.3: Consider the discrete-time representation of a cosine signal:

).(.5.0)2(.][
22

n
N

jn
N

j
eeAn

N
CosAnx

ππ
π −

+==

1,,2,1,0

1

1
2

1

1
2

)(
2

)(
2

22
).

2
(.)(

)1(
2

)1(2

)1(
2

)1(21

0

)1(
2

1

0

)1(
2

1

0

)1(2
1

0

)1(22
1

0

22

−=

−

−
+

−

−
=∑+∑=

∑+∑=∑
+=

+

+

−

−−

=

−−−

=

−

−

=

+−−

=

−−−

=

−

Nkfor

e

eA

e

eA
e

A
e

A

eAeAeeeAkX

k
N

j

kj

k
N

j

kjN

n

nk
N

jN

n

nk
N

j

N

n

kn
N

jN

n

kn
N

jnk
N

jN

n

n
N

jn
N

j

Lπ

π

π

πππ

πππ
ππ

• First term is 0 when 1≠k and it is .12/ =kforNA
• Second term is 0 when 1−≠ Nk and it is .12/ −= NkforNA

• Final result becomes:))]1(()1([
2

)(−−+−= Nkk
NA

kX δδ

where the first term represents the positive frequency term and the other one is the mirror image as
expected.
Now let us try to implement that using DFT with 48-points and 127-point of sampled versions:

% E1xample 6.3 Sampled Cosine with N=48
N = 48;
n =[0:1:N-1];
k = n;
M = 32;
xn = cos(2*pi*n/M);
Xk = fft(xn);
magXk = abs(Xk);
PhaseXk = angle(Xk);

% Now try it with
N = 127;
n =[0:1:N-1];
k = n;
M = 32;
xn = cos(2*pi*n/M);
Xk = fft(xn);
magXk = abs(Xk);
PhaseXk = angle(Xk);

% Plots
axis([1 2 3 4]); axis;
stem(xn); xlabel('k');ylabel('x(n)');
title('sequence x(n) = cos(2*pi*n/32) for N = 48');
grid;
figure; axis([0,47,0,18]);
plot(n,magXk,'o');

% Plots
axis([1 2 3 4]); axis;
stem(xn); xlabel('k');ylabel('x(n)');
title('sequence x(n) = cos(2*pi*n/32) for N = 127');
grid;
figure; axis([0,47,0,18]);
plot(n,magXk,'o');

6.7

xlabel('k');ylabel('|X(k)|');
title('Magnitude of DFT for N = 48'); grid;
figure; axis([0,47,-2,2]);
plot(n,PhaseXk,'*');
xlabel('k');ylabel('|X(k)|');
title('Phase of DFT for N = 48');
grid;axis;

xlabel('k');ylabel('|X(k)|');
title('Magnitude of DFT for N = 48');grid;
figure; axis([0,47,-2,2]);
plot(n,PhaseXk,'*');
xlabel('k');ylabel('|X(k)| ');
title('Phase of DFT for N = 127');
grid;axis;

6.8

Even though we were expecting two harmonics we have ended up plots needs some explanation:

• Sampled signals are becoming more like a continuous signal as N increases.
• Magnitude plots are not located at two harmonics but expand over the frequency range, which is called

“Leakage” in the business.
• Symmetry is respect to the center of the plots rather than 2-sided spectral halves, which is due to the

periodic behavior of the DFT.

6.4 Properties of DFT
Linearity:

)(.)(.]}[[][.{ kYbkXanybnxaDFT +=+ (6.15)

Time-Shift: For any real integer ,0n

6.9

)(.

].[.].[

.][]}[{

0

00

2

22
)(

2

21

0
00

kXe

emxeemx

ennxnnxDFT

kn
N

j

km
N

j

N

kn
N

jnmk
N

j

N

kn
N

jN

n

π

πππ

π

=

∑=∑=

∑ +=+

−

><

−−

><

−−

=

 (6.16)

Example 6.4: Consider the following sequence:

6.10

Example 6.5: Consider the following sequence for: 5=N

where

 ±±=

=
−
−=∑=∑=

−

−−

=

−−

= Otherwise
NNkN

e
eeWkX

Nkj

kjN

n

NkjN

n

nk
N 0

,2,,0

1
1)(~

/2

21

0

/21

0

L
π

π
π

6.11

Let us now change it to: 10=N

6.12

Circular (Periodic) Convolution:

)().()(kHkXkY = (6.17)

∑ −=∑ ∑=

∑=∑==

−

=

−

=

−

=

−

−

=

−

=

1

0

1

0

2
1

0

2

1

0

2
1

0

2

][].[.)(}.).({
1

).().(
1

).(
1

)}({][

N

m

N

k

nk
N

jN

m

mk
N

j

N

k

nk
N

jN

k

nk
N

j

mnxmhekXemh
N

ekHkX
N

ekY
N

kYIDFTny

ππ

ππ

 (6.18)

Example 6.6: Perform the periodic (circular) convolution of two sequences in Example 6.1:

 }2,1,3,1{][−−=nh and }1,0,2,1{][−=nx

The output is the product of the two sets found earlier:

1113)3().3()3(
0)2().2()2(

1113)1().1()1(
2)0().0()0(

jHXY
HXY

jHXY
HXY

+−==
==

−−==
==

The IDFT would yield the output in discrete-time domain:

5])3()2().1()0([
4
1

)3(

6])3()2().1()0([
4
1)2(

7])3()2().1()0([
4
1

)1(

6)]3()2()1()0([
4
1

)0(

2/932/3

2/3

2/322/

−=+++=

=+++=

=+++=

−=+++=

πππ

πππ

πππ

jjj

jjj

jjj

eYeYeYYy

eYeYeYYy

eYeYeYYy

YYYYy

6.13

Recall: Example 3.8: Consider the following system and signal sequences:

 }1,0,2,1{][−=nx
 }2,1,3,1{][−−=nh

• These two sequences have a common period of 4 samples.
• It is not difficult to see that the output sequence][ny will be again 4 samples long in the interval

30 ≤≤ n and repeat itself.

Let us verify that with a circular convolution table.

n 0 1 2 3

x[n] 1 2 0 -1
x[n-1] -1 1 2 0
x[n-2] 0 -1 1 2
x[n-3] 2 0 -1 1

h[0]x[n] 1 2 0 -1
h[1]x[n-1] -3 3 6 0
h[2]x[n-2] 0 1 -1 -2
h[3]x[n-3] -4 0 2 -2

yc[n] -6 6 7 -5

The last row or the output is: }5,7,6,6{4][nyy[n] c −−=+= , which identical to the answer we got in
Chapter 3.

Linear Convolution Using DFT : As in all previous transforms, the response of an discrete LTI system with
an impulse response][nh , the output due to any input][nx is given by the linear convolution of the two
sequences. However, the product:)().(kHkX corresponds to a periodic convolution.

Example 6.7: Perform linear convolution of two discrete functions as shown in the matlab text below.

6.14

%Example 6.7
% Linear convolution of two-discrete finite pulses

n=-4:10;
x=zeros(size(n));
h=zeros(size(n));
x(5:9)=ones(size(n(5:9)));
h(5:7)=ones(size(n(5:7)));

axis([-4,10,0,2])
subplot(311),plot(n,x,'o');grid;
title('Input Signal'); xlabel('n'); ylabel('x(n)');
subplot(312),plot(n,h,'o');grid;
title('Impulse Response'); xlabel('n'); ylabel('h(n)');

%convolution
y=conv(h,x);
subplot(313),plot(n,y(5:19),'*');grid;
title('Output Signal'); xlabel('n'); ylabel('y(n)');

%Case: 3 2<=n<4
h3=zeros(size(n));
h3(6:8)=ones(size(n(6:8)));
figure;
subplot(311);plot(n,h3,'o');grid;
xlabel('k'); ylabel('h(n-k)');
gtext('Case 3: 2<=n < 4');
pause

%Case: 1 n less than zero
figure;
subplot(311);plot(n,x,'o');grid;
xlabel('k'); ylabel('x(k)');
h1=zeros(size(n));
h1(1:3)=ones(size(n(1:3)));
subplot(312);plot(n,h1,'o');grid;
xlabel('k'); ylabel('h(n-k)');
gtext('Case 1: n < 0');
pause;

%Case: 4 4<=n<6
h4=zeros(size(n));
h4(8:10)=ones(size(n(8:10)));
subplot(312);plot(n,h4,'o');grid;
xlabel('k'); ylabel('h(n-k)');
gtext('Case 4: 4<=n <= 6');
pause;

%Case: 2 0<=n<2
h2=zeros(size(n));
h2(4:6)=ones(size(n(4:6)));
subplot(313);plot(n,h2,'o');grid;
xlabel('k'); ylabel('h(n-k)');
gtext('Case 2: 0<=n < 2');
pause

%Case: 5 6<=n
h5=zeros(size(n));
h5(13:15)=ones(size(n(13:15)));
subplot(313);plot(n,h5,'o');grid;
xlabel('k'); ylabel('h(n-k)');
gtext('Case 5: n>6');

6.15

6.16

Now the question:

Can we use DFT to perform linear convolution, i.e. convolution of two different size functions?

1. Assume that][nh has length M and][nx has length .; NMN <
2. Zero-pad both to the length },{ NMMaxK ≥ to form augmented sequences:][];[nxnh aa and perform a

K-point periodic convolution to yield:].[nyP
3.][nyP is a K-point sequence whereas, the linear convolution][nyL of these sequences would have

been L-points long where .1−+= NML

• For LK = , both][nyP and][nyL would be identical.
• For LK < ,][nyP would correspond to the sequence obtained by adding in (time-aliasing) the

last KL − values of][nyL to the first KL − points. Thus, the first KL − points][nyP will NOT
corresponds to][nyL , while the reaming LK −2 would be the same in both sequences.][nyL .

6.17

Example 6.8: Perform the circular convolution as linear convolution with aliasing (example from my NTU,
Singapore Class notes):

6.18

6.19

6.20

Example 6.9: Suppose]6[][][][21 −−== nununxnx

6.21

Conclusion: When ,1−+≥ PLN time-aliasing in the periodic convolution of two-finite length discrete signals
can be avoided.

6.22

Example 6.10: Perform linear convolution for P<L of two sequences shown in the picture.

Let us now calculate intpoL − periodic convolution:

6.23

6.5 Fast Fourier Transform (FFT)

FFT since its introduction by Cooley-Tukey almost a half century ago has been playing historically
sustained significant role in the development of DSP since it is the most widely used “fast algorithm” in
solving many engineering challenges, designing filters, performing spectral analysis, estimation, noise
cancellation and benchmark testing devices and systems, etc. Also, it is also very readily useable for
computing the inverse transforms. Consider the definition of DFT in (6.1)

1,,2,1,0})
2

()
2

(]{[][)(
1

0

1

0

2

−=∑ ∑ −==
−

=

−

=

−
Nkfornk

N
jSinnk

N
CosnxenxkX

N

n

N

n

nk
N

j
L

ππ
π

To appreciate its computational efficiency let us define:

6.24

AccumulateComplexAddComplexMultiplySinMultiplyCos

AddComplexMultiplyComplexOP
1111

111
+++=

+=
 (6.20)

• To compute N -Point DFT we need .2 OPSN
• Cooley-Tukey basic FFT algorithm requires .log. 2 OPSNN

m mN 2=
DFT OPs Cooley-Tukey FFT OPs FFT Savings

1 2 4 2 50%
2 4 16 8 50%
3 8 64 24 62.5%
4 16 256 64 75%
5 32 1024 160 84.4%
6 64 4096 384 90.6%
7 128 16384 896 94.5%
8 256 65536 2048 96.9%
9 512 262144 4608 98.2%
10 1024 1048576 10240 99.0%

• 99% savings in computational complexity is unheard of in any other fast algorithm in science. Even for
reasonable and frequently observed FTT sizes of 128 or 256-points FFT we are in the 90% savings
range.

Decimation-in-Time Algorithm (DIT): Let us divide][nx into two subsequences, each with length N/2, by
grouping the even indexed samples and the odd-indexed samples. Then (6.7) can be written as:

 kn
N

evenn

kn
N

oddn

N

n

kn
N WnxWnxWnxkX ∑+∑=∑=

==

−

=
].[].[].[)(

1

0
 (6.21)

Let n=2r in the first and n=2r+1 in the second sum:

]12[][].[.].[

]2[][].12[].2[)(

12/

0

212/

0

2

12/

0

)12(12/

0

2

+=∑+∑=

=∑ ++∑=

−

=

−

=

−

=

+−

=

rxrhwithWrhWWrg

rxrgwithWrxWrxkX

N

r

kr
N

k
N

N

r

kr
N

N

r

kr
N

N

r

kr
N

 (6.22)

These N/2 point terms uses the fact that

6.25

 22
22.2

2/
2

2/)(N
N

j
N

j
N

j

N WeeeW ====
−−−

πππ

 (6.23)
with this we can write (6.22) as:
 1,,2,1,0)(.)()(−=+= NkforkHWkGkX k

N L (6.24)
where)(kG and)(kH represent N/2 point DFTs of the corresponding sequences in the time-domain,
respectively.. Since)(kG and)(kH are periodic with a period N/2, we can write the last equation as:

)(.)()
2

(

)(.)()(

2/ kHWkGNkX

and

kHWkGkX

Nk
N

k
N

++=+

+=

 1
2

,,2,1,0 −=
N

kfor L (6.25)

This last expression can be illustrated by a signal-flow graph called “Butterfly.”

where kn

N
r
N WW .= . It is clear from above that the signal at any node is the sum of all branches entering the

node. This butterfly is true for any particular value of k in a given range. It can be applied repeatedly to
compute the larger order FFT tasks as it is done below for an 8-point FFT.
)0(.)0()0(0

8 HWGX +=)1(.)1()1(1
8 HWGX +=)2(.)2()2(2

8 HWGX +=

)3(.)3()3(3
8 HWGX += But:)4()0(GG = ;)5()1(GG = ;)6()2(GG = ;)7()3(GG =

)0(.)0()4(.)4()4(4
8

4
8 HWGHWGX +=+=)1(.)1()5(5

8 HWGX +=

)2(.)2()6(6
8 HWGX +=)3(.)3()7(7

8 HWGX +=

6.26

Since 24/ =N is even, we can re-iterate the process again:

 ∑ ++∑=∑=
−

=

+−

=

−

=

14/

0

)12(
2/

14/

0

2
2/

12/

0
2/].12[].2[].[)(

N

l

kl
N

N

l

lk
N

N

r

rk
N WlgWlgWrgkG

∑ ++∑=

∑ ++∑=

−

=

−

=

−

=

−

=

14/

0

2
2/2/

14/

0

2
2/

14/

0

2
2/2/

14/

0

2
2/

].12[].2[)(

].12[].2[)(

N

l

lk
N

lk
N

N

l

lk
N

N

l

lk
N

lk
N

N

l

lk
N

WlhWWlhkH

and

WlgWWlgkG

 (6.26)

6.27

6.28

Using the special case for a two-point butterfly, we obtain the full 8-point FFT process:

6.29

It is clear from above examples that the input sequence has to be organized in such a way that the output
frequency terms appear in a proper sequential manner. The technique to achieve this systematically is called
In-Place FFT or bit-shuffling.

6.30

]000[]000[0xx =]100[]001[0xx =]010[]010[0xx =]110[]011[0xx =
]001[]100[0xx =]101[]101[0xx =]011[]110[0xx =]111[]111[0xx =

6.31

Decimation-in-Frequency Algorithm (DIF): It is obtained by dividing the output sequence)(kX , each with
length N/2, by grouping the even indexed samples and the odd-indexed samples. Then (6.7) can be re-
written this time:

 ∑ ++∑=∑+∑=
−

=

−

=

−

=

−

=

12/

0

2/.12/

0

1

2/

12/

0
].

2
[.].[].[].[)(

N

n

kn
N

Nk
N

N

n

kn
N

N

Nn

kn
N

N

n

kn
N WNnxWWnxWnxWnxkX (6.27)

Since kNk

NW)1(2/. −= we can write the last expression as:

 ∑ +−+=
−

=

12/

0
)).

2
[)1(][()(

N

n

kn
N

k WNnxnxkX

Now let us use the similar formulation as in DIT case:

 1
2

0]).
2

[][(][]
2

[][][−≤≤+−=++=
N

nwhereW
N

nxnxnhand
N

nxnxng n
N (6.28)

As we did in the previous case, we determine the two N/2-point DFTs)}(),({ kHkG by computing the even
and odd values separately by forming:

6.32

]
4

[][][1
N

ngngng ++= and n
NW

N
ngngng 2/2]).

4
[][(][+−= (6.29a)

]
4

[][][1
N

nhnhnh ++= and n
NW

N
nhnhnh 2/2]).

4
[][(][+−= (6.29b)

and

6.33

Replacing the last stage with butterflies we have the final 8-point FFT-DIF.

6.34

This time the output sequence is NOT in proper order. As in the DIT case, we need to perform bit-shuffling or
in-place FFT at the output stage.

6.6 Spectrum Estimation and Windowing Using FFT
A large majority of real-life signals are analog signals and the question becomes how can we benefit from the
computational efficiency of FFT for these signals.
1. The first step in the process is to sample an analog signal)(txa at a uniform rate, hopefully faster than the
Nyquist rate in order to avoid aliasing. Let the sampling pulse be an ideal impulse train:

 ∑ −=
∞

−∞=n
T nTttp)()(δ (6.30)

and the resulting sampled sequence and the term-by-term Fourier transform become:

)().()(tptxtx TaS = and)(
1

)(S
m

aS mwwX
T

wX +∑=
∞

−∞=
 (6.31)

The last expression has infinitely many terms. If the signal is band-limited then we can succeed.

6.35

(Extracted with permission from The Fourier Transform by Omar Brigham, Prentice-Hall, 1987.)

2. The second step in the process is to isolate the sampled signal in a finite-window by multiplying with a
window function).(tw The length (size) of the window 0T is related to the number of data points and the
sampling interval via TNT .0 = . The simplest window from is a rectangular one as shown in (c). The function
and its Fourier transform are defined by:

20

2
1)(0

T
Tt

Otherwise

TiftwR −<≤

 −= and 2

0

0
0

0

2/
)2/(

.)(
TT

jw
R e

wT
wTSin

TwW
−

−
= (6.32)

The shift of 2/T from the origin is introduced to avoid having data samples at the edges of the window. The
resulting Fourier transform is shown in (d) or as in next picture.

6.36

3. The final step is to sample the number of frequency points at equal intervals in the frequency-domain. The
spacing between samples is 0/2/ TNwS π= .

• Since the sampled signal in time-domain is obtained by multiplication then the sampling in frequency-
domain will be modeled as the multiplication of:)(*)(wWwX RS by the impulse train in the frequency-

domain:)2(2)(
00

0 T
mw

T
wP

m
T

πδπ
∑ −=
∞

−∞=
, which has an inverse FT: ∑ −=

∞

−∞=m
T mTttp)()(00

δ . The result will

be the periodic extension of the signal)().(twtx RS with period .0T (figure g).

• So, the original signal is replaced by its periodic extension.

• For a general analog signal the spectrum obtained by DFT is somewhat different from the true
spectrum.

There are two errors in the process:

1. The aliasing error due to sampling if not properly pre-filtered before sampling.

6.37

2. The windowing introduces ripples into the spectrum due to the convolution operation causing the signal
component to spread over or leak into other frequencies. For no leakage, the FT of the window function
must be a delta function, which is not. So, windowing causes leakage.

• To minimize spectral leakage, we need to choose a window which is close to a delta function as
possible. The rectangular function is not.

• The discrete version of the rectangular window is expressed by:

 −<≤

=
Otherwise

Nn
nwR 0

101
][and the frequency response: 2

1

.
)2/(
)2/(

)(
−

Ω−

Ω
Ω

=Ω
N

j
R e

Sin
NSin

W (6.33)

6.38

• Let us compare the performance of a popular (significantly efficient) window (Hamming) against a
rectangular window of (6.33). The time-domain behavior of an Hamming window is given by:

n
N

CosnWH 1
2.46.054.0][

−
−= π (6.34)

The windows and their spectra are shown below:

6.39

Observations:

• Since the tails of the window tapers off to zero in a smooth fashion, the end effects are avoided (no Gibbs
phenomenon.)

• Both magnitude spectra exhibit LP characteristics.

• Rectangular window has approximately -13 dB for the first side lobe and settles down to about -30 dB in
the long run.

• Hamming window has the first side lobe at -50 dB and it settles down to -48 dB in the long run. So,
drastically superior to the rectangular window.

• Hamming window as the spectrum indicates can be used as a LOW-PASS filter by itself. In other words,
take a sequence and subject it to a Hamming window and the net result is a low-pass filtering action! So,
we have designed a LPF without going through a digital filter design process!

The most critical factor to be watched for is the frequency resolution, which stands for the spacing between
frequency samples in the window. If the resolution is too low, we may miss critical information due to scarcity
If the resolution is too high then the computational cost increases to make it impractical in many applications.

The frequency resolution is defined by:

0

22
TNTN

w
w S ππ

===∆ (6.35)

To improve the resolution, we need to use a longer data sequence if possible, otherwise we pad it with zeros.

Example 6.11: Compare the DFT (DFT) spectra of Hamming window for .128,64,32=N

6.40

