Find the value of sin 37°, sin 53°, tan 37°, tan 53° in terms of the fraction

By Shivank Goel|Updated : August 3rd, 2022

We need to Find the value of sin 37°, sin 53°, tan 37°, and tan 53° in terms of the fraction.

Let us use complementary relations to determine the values.

Find the value of sin

This is the case when the angle = 37° or 53°

We know that

cos A = base/hypotenuse

cos 53° = 3/5

cos 37° = 4/5

sin 90° - A = cos A

cos 53° = sin 37°

cos 37° = sin 53°

tan A = perpendicular/base

tan 37° = 3/4

tan 53° = 4/3

Therefore, when asked to find the value of sin 37°, sin 53°, tan 37°, or tan 53° in terms of the fraction then, the answer will be the value of sin 37° = 3/5, sin 53° = 4/5, tan 37° = ¾ and tan 53° = 4/3.

Summary:

Find the value of sin 37°, sin 53°, tan 37°, and tan 53° in terms of the fraction.

The value of sin 37°, sin 53°, tan 37°, and tan 53° in terms of the fraction are ⅗, ⅘, 3/4, and 4/3.

Comments

write a comment

Follow us for latest updates